High prevalence, coinfection rate, and genetic diversity of retroviruses in wild red colobus monkeys (Piliocolobus badius badius) in Tai National Park, Cote d'Ivoire.

Research Group Emerging Zoonoses, Robert Koch Institut, Nordufer 20, Berlin, Germany.
Journal of Virology (Impact Factor: 4.65). 08/2010; 84(15):7427-36. DOI: 10.1128/JVI.00697-10
Source: PubMed

ABSTRACT Simian retroviruses are precursors of all human retroviral pathogens. However, little is known about the prevalence and coinfection rates or the genetic diversity of major retroviruses-simian immunodeficiency virus (SIV), simian T-cell lymphotropic virus type 1 (STLV-1), and simian foamy virus (SFV)-in wild populations of nonhuman primates. Such information would contribute to the understanding of the natural history of retroviruses in various host species. Here, we estimate these parameters for wild West African red colobus monkeys (Piliocolobus badius badius) in the Taï National Park, Côte d'Ivoire. We collected samples from a total of 54 red colobus monkeys; samples consisted of blood and/or internal organs from 22 monkeys and additionally muscle and other tissue samples from another 32 monkeys. PCR analyses revealed a high prevalence of SIV, STLV-1, and SFV in this population, with rates of 82%, 50%, and 86%, respectively. Forty-five percent of the monkeys were coinfected with all three viruses while another 32% were coinfected with SIV in combination with either STLV or SFV. As expected, phylogenetic analyses showed a host-specific pattern for SIV and SFV strains. In contrast, STLV-1 strains appeared to be distributed in genetically distinct and distant clades, which are unique to the Taï forest and include strains previously described from wild chimpanzees in the same area. The high prevalence of all three retroviral infections in P. b. badius represents a source of infection to chimpanzees and possibly to humans, who hunt them.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the benefits and costs of acquiring and consuming different forms of animal matter by primates is critical for identifying the selective pressures responsible for increased meat consumption in the hominin lineage. Chimpanzees (Pan troglodytes) are unusual among primates in the amount of vertebrate prey they consume. Still, surprisingly little is known about the nutritional benefits of eating meat for this species. In order to understand why chimpanzees eat vertebrates, it is critical to consider the relative benefits and costs of other types of faunivory – including invertebrates. Although we lack specific nutritional data on the flesh and organs of chimpanzee prey, the macronutrient profiles of insects and wild vertebrate meat are generally comparable on a gram-to-gram basis. There are currently very few data on the micronutrient (vitamin and mineral) content of meat consumed by chimpanzees. With few exceptions, the advantages of hunting vertebrate prey include year-round availability, rapid acquisition of larger packages and reduced handling/processing time (once prey are encountered or detected). The disadvantages of hunting vertebrate prey include high potential acquisition costs per unit time (energy expenditure and risk of injury) and greater contest competition with conspecifics. Acquiring an equivalent mass of invertebrates (to match even a small scrap of meat) is possible, but typically takes more time. Furthermore, in contrast to vertebrate prey, some insect resources are effectively available only at certain times of the year. Here we identify the critical data needed to test our hypothesis that meat scraps may have a higher (or at least comparable) net benefit:cost ratio than insect prey. This would support the ‘meat scrap’ hypothesis as an explanation for why chimpanzees hunt in groups even when doing so does not maximize an individual's energetic gain.
    Journal of Human Evolution 06/2014; · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foamy viruses belong to the genus Spumavirus of the family Retroviridae and have been isolated from many mammalian species. It was reported that simian foamy viruses (SFVs) have co-evolved with host species. In this study, we isolated four strains (WK1, WK2, AR1 and AR2) of SFV (named SFVjm) from Japanese macaques (Macaca fuscata) in main island Honshu of Japan. We constructed an infectious molecular clone of SFVjm strain WK1, termed pJM356. The virus derived from the clone replicated and induced syncytia in human (human embryonic kidney 293T cells), African green monkey (Vero cells) and mouse cell lines (Mus dunni tail fibroblast cells). Phylogenetic analysis also revealed that these four SFVjm strains formed two distinct SFVjm clusters. SFVjm strains WK1 and WK2 and SFV isolated from Taiwanese macaques (Macaca cyclopis) formed one cluster, whereas strains AR1 and AR2 formed the other cluster with SFV isolated from a rhesus macaque (Macaca mulatta).
    Gene 07/2014; · 2.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The existence and genetic make-up of most primate retroviruses was revealed by studies of bushmeat and fecal samples from unhabituated primate communities. For these, detailed data on intra-and within-species contact rates are generally missing, which makes identification of factors influencing transmission a challenging task. Here we present an assessment of 12 years of research on primate retroviruses in the Taï National Park area, Côte d'Ivoire. We discuss insights gained into the prevalence, within-and cross-species transmission of primate retroviruses (including towards local human populations) and the importance of virus–host interactions in determining cross-species transmission risk. Finally we discuss how retroviruses ecology and evolution may change in a shifting environment and identify avenues for future research.
    Virology 07/2014; 460-461:147-153. · 3.35 Impact Factor


Available from
May 20, 2014