Article

Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding.

Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
Genes & development (Impact Factor: 12.64). 05/2010; 24(10):1022-34. DOI: 10.1101/gad.1881010
Source: PubMed

ABSTRACT The p53 transcriptional program orchestrates alternative responses to stress, including cell cycle arrest and apoptosis, but the mechanism of cell fate choice upon p53 activation is not fully understood. Here we report that PUMA (p53 up-regulated modulator of apoptosis), a key mediator of p53-dependent cell death, is regulated by a noncanonical, gene-specific mechanism. Using chromatin immunoprecipitation assays, we found that the first half of the PUMA locus (approximately 6 kb) is constitutively occupied by RNA polymerase II and general transcription factors regardless of p53 activity. Using various RNA analyses, we found that this region is constitutively transcribed to generate a long unprocessed RNA with no known coding capacity. This permissive intragenic domain is constrained by sharp chromatin boundaries, as illustrated by histone marks of active transcription (histone H3 Lys9 trimethylation [H3K4me3] and H3K9 acetylation [H3K9Ac]) that precipitously transition into repressive marks (H3K9me3). Interestingly, the insulator protein CTCF (CCCTC-binding factor) and the Cohesin complex occupy these intragenic chromatin boundaries. CTCF knockdown leads to increased basal expression of PUMA concomitant with a reduction in chromatin boundary signatures. Importantly, derepression of PUMA upon CTCF depletion occurs without p53 activation or activation of other p53 target genes. Therefore, CTCF plays a pivotal role in dampening the p53 apoptotic response by acting as a gene-specific repressor.

Full-text

Available from: Joaquín M Espinosa, Mar 20, 2015
0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papillomaviruses infect stratified epithelia and link their productive life cycle to the differentiation state of the host cell. Productive viral replication or amplification is restricted to highly differentiated suprabasal cells and is dependent on the activation of the ATM DNA damage pathway. The ATM pathway has three arms that can act independently of one another. One arm is centered on p53, another on CHK2 and a third on SMC1/NBS1 proteins. A role for CHK2 in HPV genome amplification has been demonstrated but it was unclear what other factors provided important activities. The cohesin protein, SMC1, is necessary for sister chromatid association prior to mitosis. In addition the phosphorylated form of SMC1 plays a critical role together with NBS1 in the ATM DNA damage response. In normal cells, SMC1 becomes phosphorylated in response to radiation, however, in HPV positive cells our studies demonstrate that it is constitutively activated. Furthermore, pSMC1 is found localized in distinct nuclear foci in complexes with γ-H2AX, and CHK2 and bound to HPV DNA. Importantly, knockdown of SMC1 blocks differentiation-dependent genome amplification. pSMC1 forms complexes with the insulator transcription factor CTCF and our studies show that these factors bind to conserved sequence motifs in the L2 late region of HPV 31. Similar motifs are found in most HPV types. Knockdown of CTCF with shRNAs blocks genome amplification and mutation of the CTCF binding motifs in the L2 open reading frame inhibits stable maintenance of viral episomes in undifferentiated cells as well as amplification of genomes upon differentiation. These findings suggest a model in which SMC1 factors are constitutively activated in HPV positive cells and recruited to viral genomes through complex formation with CTCF to facilitate genome amplification. Our findings identify both SMC1 and CTCF as critical regulators of the differentiation-dependent life cycle of high-risk human papillomaviruses.
    PLoS Pathogens 04/2015; 11(4):e1004763. DOI:10.1371/journal.ppat.1004763 · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.
    PLoS Genetics 01/2015; 11(1):e1004885. DOI:10.1371/journal.pgen.1004885 · 8.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CCCTC-binding factor (CTCF) is a key regulator of nuclear chromatin structure and gene regulation. The impact of CTCF on transcriptional output is highly varied, ranging from repression to transcriptional pausing and transactivation. The multifunctional nature of CTCF may be directed solely through remodeling chromatin architecture. However, another hypothesis is that the multifunctional nature of CTCF is mediated, in part, through differential association with protein partners having unique functions. Consistent with this hypothesis, our mass spectrometry analyses of CTCF interacting partners reveal a previously undefined association with the transcription factor general transcription factor II-I (TFII-I). Biochemical fractionation of CTCF indicates that a distinct CTCF complex incorporating TFII-I is assembled on DNA. Unexpectedly, we found that the interaction between CTCF and TFII-I is essential for directing CTCF to the promoter proximal regulatory regions of target genes across the genome, particularly at genes involved in metabolism. At genes coregulated by CTCF and TFII-I, we find knockdown of TFII-I results in diminished CTCF binding, lack of cyclin-dependent kinase 8 (CDK8) recruitment, and an attenuation of RNA polymerase II phosphorylation at serine 5. Phenotypically, knockdown of TFII-I alters the cellular response to metabolic stress. Our data indicate that TFII-I directs CTCF binding to target genes, and in turn the two proteins cooperate to recruit CDK8 and enhance transcription initiation.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1416674112 · 9.81 Impact Factor