Article

Myosin VI Rewrites the Rules for Myosin Motors

Department of Physiology, University of Pennsylvania School of Medicine, B700 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA.
Cell (Impact Factor: 33.12). 05/2010; 141(4):573-82. DOI: 10.1016/j.cell.2010.04.028
Source: PubMed

ABSTRACT Myosin VI is the only type of myosin motor known to move toward the minus ends of actin filaments. This reversal in the direction of its movement is in part a consequence of the repositioning of its lever arm. In addition, myosin VI has a number of other specialized structural and functional adaptations that optimize performance of its unique cellular roles. Given that other classes of myosins may share some of these features, understanding the design principles of myosin VI will help guide the study of the functions of myosins that adopt similar strategies.

Full-text

Available from: Anne Houdusse, May 29, 2015
0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myosin VI (MVI) is a unique motor protein moving towards the minus end of actin filaments unlike other known myosins. Its important role has recently been postulated for striated muscle and myogenic cells. Since MVI functions through interactions of C-terminal globular tail (GT) domain with tissue specific partners, we performed a search for MVI partners in myoblasts and myotubes using affinity chromatography with GST-tagged MVI-GT domain as a bait. A kinase anchoring protein 9 (AKAP9), a regulator of PKA activity, was identified by means of mass spectrometry as a possible MVI interacting partner both in undifferentiated and differentiating myoblasts and in myotubes. Coimmunoprecipitation and proximity ligation assay confirmed that both proteins could interact. MVI and AKAP9 colocalized at Rab5 containing early endosomes. Similarly to MVI, the amount of AKAP9 decreased during myoblast differentiation. However, in MVI-depleted cells, both cAMP and PKA levels were increased and a change in the MVI motor-dependent AKAP9 distribution was observed. Moreover, we found that PKA phosphorylated MVI-GT domain, thus implying functional relevance of MVI-AKAP9 interaction. We postulate that this novel interaction linking MVI with the PKA pathway could be important for targeting AKAP9-PKA complex within cells and/or providing PKA to phosphorylate MVI tail domain.
    01/2015; 2015:1-12. DOI:10.1155/2015/816019
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myosin crystal structures have given rise to the swinging lever arm hypothesis, which predicts a large axial tilt of the lever arm domain during the actin-attached working stroke. Previous work imaging the working stroke in actively contracting, fast-frozen Lethocerus muscle confirmed the axial tilt; but strongly bound myosin heads also showed an unexpected azimuthal slew of the lever arm around the thin filament axis, which was not predicted from known crystal structures. We hypothesized that an azimuthal reorientation of the myosin motor domain on actin during the weak-binding to strong-binding transition could explain the lever arm slew provided that myosin's α-helical coiled-coil subfragment 2 (S2) domain emerged from the thick filament backbone at a particular location. However, previous studies did not adequately resolve the S2 domain. Here we used electron tomography of rigor muscle swollen by low ionic strength to pull S2 clear of the thick filament backbone, thereby revealing the azimuth of its point of origin. The results show that the azimuth of S2 origins of those rigor myosin heads, bound to the actin target zone of actively contracting muscle, originate from a restricted region of the thick filament. This requires an azimuthal reorientation of the motor domain on actin during the weak to strong transition. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
    Biophysical Journal 03/2015; 108(6):1495-502. DOI:10.1016/j.bpj.2014.12.059 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.
    Proceedings of the National Academy of Sciences 03/2015; 112(11). DOI:10.1073/pnas.1420989112 · 9.81 Impact Factor