Rift Valley fever in Kenya: history of epizootics and identification of vulnerable districts.

Kenya Ministry of Livestock Development, Kabete, Kenya.
Epidemiology and Infection (Impact Factor: 2.49). 03/2011; 139(3):372-80. DOI: 10.1017/S0950268810001020
Source: PubMed

ABSTRACT Since Kenya first reported Rift Valley fever (RVF)-like disease in livestock in 1912, the country has reported the most frequent epizootics of RVF disease. To determine the pattern of disease spread across the country after its introduction in 1912, and to identify regions vulnerable to the periodic epizootics, annual livestock disease records at the Department of Veterinary Services from 1910 to 2007 were analysed in order to document the number and location of RVF-infected livestock herds. A total of 38/69 (55%) administrative districts in the country had reported RVF epizootics by the end of 2007. During the 1912-1950 period, the disease was confined to a district in Rift Valley province that is prone to flooding and where livestock were raised in proximity with wildlife. Between 1951 and 2007, 11 national RVF epizootics were recorded with an average inter-epizootic period of 3·6 years (range 1-7 years); in addition, all epizootics occurred in years when the average annual rainfall increased by more than 50% in the affected districts. Whereas the first two national epizootics in 1951 and 1955 were confined to eight districts in the Rift Valley province, there was a sustained epizootic between 1961 and 1964 that spread the virus to over 30% of the districts across six out of eight provinces. The Western and Nyanza provinces, located on the southwestern region of the country, had never reported RVF infections by 2007. The probability of a district being involved in a national epizootic was fivefold higher (62%) in districts that had previously reported disease compared to districts that had no prior disease activity (11%). These findings suggests that once introduced into certain permissive ecologies, the RVF virus becomes enzootic, making the region vulnerable to periodic epizootics that were probably precipitated by amplification of resident virus associated with heavy rainfall and flooding.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. ©The American Society of Tropical Medicine and Hygiene.
    The American journal of tropical medicine and hygiene 02/2015; 92(4). DOI:10.4269/ajtmh.14-0363 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of vector ecology is important in understanding the transmission dynamics of vector borne disease. In this study, we determined the distribution and diversity of mosquitoes along the major nomadic livestock movement routes (LMR) in the traditional pastoral ecozone of northeastern Kenya. We focused on the vectors of Rift Valley fever virus (RVFv) with the aim of understanding their ecology and how they can potentially influence the circulation of RVFv. Mosquito surveys were conducted during the short and long rainy seasons from November 2012 to August 2014 using CO2-baited CDC light traps at seven sites selected for their proximity to stopover points that provide pasture, water and night bomas (where animals spend nights). We compared mosquito abundance and diversity across the sites, which were located in three ecological zones (IV, V and VI), based on the classification system of agro-ecological zones in Kenya. Over 31,000 mosquitoes were trapped comprising 21 species belonging to 6 genera. Overall mosquito abundance varied significantly by ecological zones and sites. Mansonia species (Ma. uniformis and Ma. africana) were predominant (n = 12,181, 38.3 %). This was followed by the primary RVF vectors, Ae. ochraceus and Ae. mcintoshi comprising 17.9 and 14.98 %, respectively, of the total captures and represented across all sites and ecological zones. The Shannon diversity index ranged from 0.8 to 2.4 with significant zone, site and seasonal variations. There was also significant species richness of RVF vector across ecological zones. Our findings highlight differential occurrence of RVFv vectors across ecological zones and sampling sites, which may be important in determining areas at risk of emergence and circulation of RVFv. Moreover, the vector distribution map along LMR generated in this study will guide potential interventions for control of the disease, including strategic vaccination for livestock.
    Parasites & Vectors 05/2015; 8(1):294. DOI:10.1186/s13071-015-0907-1 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ijara district in Kenya was one of the hotspots of Rift Valley fever (RVF) during the 2006/2007 outbreak, which led to human and animal deaths causing major economic losses. The main constraint for the control and prevention of RVF is inadequate knowledge of the risk factors for its occurrence and maintenance. This study was aimed at understanding the perceived risk factors and risk pathways of RVF in cattle in Ijara to enable the development of improved community-based disease surveillance, prediction, control and prevention. A cross-sectional study was carried out from September 2012 to June 2013. Thirty-one key informant interviews were conducted with relevant stakeholders to determine the local pastoralists' understanding of risk factors and risk pathways of RVF in cattle in Ijara district. All the key informants perceived the presence of high numbers of mosquitoes and large numbers of cattle to be the most important risk factors contributing to the occurrence of RVF in cattle in Ijara. Key informants classified high rainfall as the most important (12/31) to an important (19/31) risk factor. The main risk pathways were infected mosquitoes that bite cattle whilst grazing and at watering points as well as close contact between domestic animals and wildlife. The likelihood of contamination of the environment as a result of poor handling of carcasses and aborted foetuses during RVF outbreaks was not considered an important pathway. There is therefore a need to conduct regular participatory community awareness sessions on handling of animal carcasses in terms of preparedness, prevention and control of any possible RVF epizootics. Additionally, monitoring of environmental conditions to detect enhanced rainfall and flooding should be prioritised for preparedness.
    The Onderstepoort journal of veterinary research 11/2014; 81(1). DOI:10.4102/ojvr.v81i1.780 · 0.62 Impact Factor