Article

The effect of Li+ on GSK-3 inhibition: molecular dynamics simulation.

Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City, Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang Province, People's Republic of China.
Journal of Molecular Modeling (Impact Factor: 1.98). 02/2011; 17(2):377-81. DOI:10.1007/s00894-010-0738-0
Source: PubMed

ABSTRACT Glycogen synthase kinase-3 (GSK-3) is a kind of serine-threonine protein kinase. It places important roles in several signaling pathways and it is a key therapeutic target for a number of diseases, such as diabetes, cancer, Alzheimer's disease and chronic inflammation. Mg(2+) ions which interact with ATP are conserved in GSK. They are important in phosphoryl transfer. Li(+) is an inhibitor for GSK-3. It is used to treat bipolar mood disorder. This paper illustrates the effect of Li(+) on GSK-3. When Mg(I)(2+) is replaced by Li(+), the atom fluctuation of GSK-3 will rise, and the in-line phosphoryl transfer mechanism is probably demolished and the binding of pre-phosphorylated substrates may be disturbed. All the results we obtained clearly suggest that inhibition to GSK-3 is caused by the Mg(I)(2+) replacement with Li(+).

0 0
 · 
0 Bookmarks
 · 
73 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase that requires two cofactor Mg(2+) ions for catalysis in regulating many important cellular signals. Experimentally, Li(+) is a competitive inhibitor of GSK3β relative to Mg(2+), while this mechanism is not experienced with other group I metal ions. Herein, we use native Mg(2)(2+)-Mg(1)(2+) GSK3β and its Mg(2)(2+)-M(1)(+) (M = Li, Na, K, and Rb) derivatives to investigate the effect of metal ion substitution on the mechanism of inhibition through two-layer ONIOM-based quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations. The results of ONIOM calculations elucidate that the interaction of Na(+), K(+), and Rb(+) with ATP is weaker compared to that of Mg(2+) and Li(+) with ATP, and the critical triphosphate moiety of ATP undergoes a large conformational change in the Na(+), K(+), and Rb(+) substituted systems. As a result, the three metal ions (Na(+), K(+), and Rb(+)) are not stable and depart from the active site, while Mg(2+) and Li(+) can stabilize in the active site, evident in MD simulations. Comparisons of Mg(2)(2+)-Mg(1)(2+) and Mg(2)(2+)-Li(1)(+) systems reveal that the inline phosphor-transfer of ATP and the two conserved hydrogen bonds between Lys85 and ATP, together with the electrostatic potential at the Li(1)(+) site, are disrupted in the Mg(2)(2+)-Li(1)(+) system. These computational results highlight the possible mechanism why Li(+) inhibits GSK3β.
    Physical Chemistry Chemical Physics 03/2011; 13(15):7014-23. · 3.83 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Glycogen synthase kinase 3β (GSK3β) is a ubiquitous serine/threonine kinase that plays a pivotal role in many biological processes. GSK3β catalyzes the transfer of γ-phosphate of ATP to the unique substrate Ser/Thr residues with the assistance of two natural activating cofactors Mg(2+) . Interestingly, the biological observation reveals that a non-native Ca(2+) ion can inhibit the GSK3β catalytic activity. Here, the inhibitory mechanism of GSK3β by the displacement of native Mg(2+) at site 1 by Ca(2+) was investigated by means of 80 ns comparative molecular dynamics (MD) simulations of the GSK3β···Mg(2+) -2/ATP/ Mg(2+) -1 and GSK3β···Mg(2+) -2/ATP/Ca(2+) -1 systems. MD simulation results revealed that using the AMBER point charge model force field for Mg(2+) was more appropriate in the reproduction of the active site architectural characteristics of GSK3β than using the magnesium-cationic dummy atom model force field. Compared with the native Mg(2+) bound system, the misalignment of the critical triphosphate moiety of ATP, the erroneous coordination environments around the Mg(2+) ion at site 2, and the rupture of the key hydrogen bond between the invariant Lys85 and the ATP O(β2) atom in the Ca(2+) substituted system were observed in the MD simulation due to the Ca(2+) ion in active site in order to achieve its preferred sevenfold coordination geometry, which adequately abolish the enzymatic activity. The obtained results are valuable in understanding the possible mechanism by why Ca(2+) inhibits the GSK3β activity and also provide insights into the mechanism of Ca(2+) inhibition in other structurally related protein kinases. Proteins 2012. © 2012 Wiley Periodicals, Inc.
    Proteins Structure Function and Bioinformatics 11/2012; · 3.34 Impact Factor

Hao Sun