The effect of Li+ on GSK-3 inhibition: molecular dynamics simulation.

Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City, Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang Province, People's Republic of China.
Journal of Molecular Modeling (Impact Factor: 1.98). 02/2011; 17(2):377-81. DOI: 10.1007/s00894-010-0738-0
Source: PubMed

ABSTRACT Glycogen synthase kinase-3 (GSK-3) is a kind of serine-threonine protein kinase. It places important roles in several signaling pathways and it is a key therapeutic target for a number of diseases, such as diabetes, cancer, Alzheimer's disease and chronic inflammation. Mg(2+) ions which interact with ATP are conserved in GSK. They are important in phosphoryl transfer. Li(+) is an inhibitor for GSK-3. It is used to treat bipolar mood disorder. This paper illustrates the effect of Li(+) on GSK-3. When Mg(I)(2+) is replaced by Li(+), the atom fluctuation of GSK-3 will rise, and the in-line phosphoryl transfer mechanism is probably demolished and the binding of pre-phosphorylated substrates may be disturbed. All the results we obtained clearly suggest that inhibition to GSK-3 is caused by the Mg(I)(2+) replacement with Li(+).

  • [Show abstract] [Hide abstract]
    ABSTRACT: Wogonin, a flavone from the root of Scutellaria baicalensis Georgi, has shown various biological activities. In our previous study, it was confirmed that wogonin could decrease the expression of hypoxia-inducible factor-1α (HIF-1α) by affecting its stability under hypoxia. However, it is still unknown whether wogonin could influence Wnt/β-catenin pathway under hypoxia. In this study, we found that wogonin disrupted Wnt/β-catenin signaling and reduced the secretion of vascular endothelial growth factor (VEGF, also known as vascular permeability factor, VPF), which increased vascular permeability in certain diseases. It was found that wogonin suppressed HUVECs hyperactivity and actin remodeling induced by hypoxia, inhibited transendothelial cell migration of the human breast carcinoma cell MDA-MB-231 and the extravasated Evans in vivo Miles vascular permeability assay. Wogonin-treated cells showed a decrease in the expression of Wnt protein and its co-receptors, as well as a parallel increase in the expression of Axin and GSK-3β in degradation complex, leading to degradation of β-catenin. In addition, wogonin promoted the binding between Axin and β-catenin, increased ubiquitination of β-catenin and promoted its degradation. Interestingly, wogonin decreased the expression of TCF-1, TCF-3, and LEF-1 and inhibited nuclear accumulation of β-catenin as well as the binding of β-catenin and TCF-1, TCF-3, or LEF-1. All of the above results showed that wogonin could inhibit the expression of VEGF, which is an important factor regulated by β-catenin. Taken together, the results suggested that wogonin was a potent inhibitor of Wnt/β-catenin and influenced vascular permeability, and this might provide new therapeutics in certain diseases. © 2013 Wiley Periodicals, Inc.
    Molecular Carcinogenesis 10/2013; · 4.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase that requires two cofactor Mg(2+) ions for catalysis in regulating many important cellular signals. Experimentally, Li(+) is a competitive inhibitor of GSK3β relative to Mg(2+), while this mechanism is not experienced with other group I metal ions. Herein, we use native Mg(2)(2+)-Mg(1)(2+) GSK3β and its Mg(2)(2+)-M(1)(+) (M = Li, Na, K, and Rb) derivatives to investigate the effect of metal ion substitution on the mechanism of inhibition through two-layer ONIOM-based quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations. The results of ONIOM calculations elucidate that the interaction of Na(+), K(+), and Rb(+) with ATP is weaker compared to that of Mg(2+) and Li(+) with ATP, and the critical triphosphate moiety of ATP undergoes a large conformational change in the Na(+), K(+), and Rb(+) substituted systems. As a result, the three metal ions (Na(+), K(+), and Rb(+)) are not stable and depart from the active site, while Mg(2+) and Li(+) can stabilize in the active site, evident in MD simulations. Comparisons of Mg(2)(2+)-Mg(1)(2+) and Mg(2)(2+)-Li(1)(+) systems reveal that the inline phosphor-transfer of ATP and the two conserved hydrogen bonds between Lys85 and ATP, together with the electrostatic potential at the Li(1)(+) site, are disrupted in the Mg(2)(2+)-Li(1)(+) system. These computational results highlight the possible mechanism why Li(+) inhibits GSK3β.
    Physical Chemistry Chemical Physics 03/2011; 13(15):7014-23. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as Cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer.
    Toxicology 07/2013; · 4.02 Impact Factor