A Salmonella enterica serovar Typhi plasmid induces rapid and massive apoptosis in infected macrophages

Medical College of Soochow University, Suzhou, China.
Cellular & molecular immunology (Impact Factor: 4.11). 07/2010; 7(4):271-8. DOI: 10.1038/cmi.2010.17
Source: PubMed


pR(ST98) is a chimeric plasmid isolated from Salmonella enterica serovar Typhi (S. typhi) that mediates the functions of drug resistance and virulence. Previously, we reported that Salmonella plasmid virulence (spv) genes were present in S. typhi. In our current study, we investigated whether plasmid pR(ST98) exhibits significant cytotoxicity in macrophages. pR(ST98) was transferred into the avirulent Salmonella enterica serovar Typhimurium (S. typhimurium) strain RIA to create the transconjugant pR(ST98)/RIA. The standard S. typhimurium virulent strain SR-11, which carries a 100-kb virulence plasmid, was used as a positive control. The bacterial strains were incubated with a murine macrophage-like cell line (J774A.1) in vitro. Apoptosis of J774A.1 cells was examined by electron microscopy and flow cytometry after annexin-V/propidium iodide labeling, and the survival of Salmonella strains in J774A.1 cells was determined. Results showed that macrophages infected with strain pR(ST98)/RIA displayed greater levels of apoptosis than those infected with RIA and that pR(ST98 )may increase bacterial survival in macrophages. Further studies showed that the pR(ST98)-induced death of macrophages was associated with the loss of mitochondrial membrane potential and that pR(ST98 )may activate caspase-9 and then caspase-3. The research data indicate that the virulence of bacteria that contain the pR(ST98) plasmid is enhanced; the presence of this plasmid increases the survival of the bacterial pathogen and acts through the mitochondrial pathway to mediate macrophage apoptosis.

8 Reads
  • Source
    • "A plasmid, isolated from Salmonella typhi and transferred to S. typhimurium, induced macrophage apoptosis (Wu et al., 2010b). It was also showed that this apoptosis was associated to the activation of caspases 9 and 3 (Wu et al., 2010a). These authors also demonstrated that pR ST98 plasmid could promote caspase 3 dependent apoptosis and suggested that its complex sequences of unknown functions might be involved in this process (Wu et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously described that a strain of Salmonella Heidelberg with a hypermutator phenotype, B182, adhered strongly to HeLa cells. In this work, we showed that this hypermutator Salmonella strain invaded HeLa epithelial cells and induced cytoskeleton alteration. Those changes lead to HeLa cell death which was characteristic of apoptosis. For the first time, we showed that this hypermutator strain induced apoptosis associated with the activation of caspases 2, 9 and 3. Complementation of B182 strain showed a decrease in cells death induction. In the presence of other Salmonella Heidelberg with a normomutator phenotype, such as WT and SL486, cell death and caspase 3 were undetectable. These results suggested that early apoptosis and caspase 3 activation were specific to B182. Besides, B182 induced LDH release and caspase 3 activation in CaCo-2 and HCT116 cells. Heat-treated B182 and diffusible products failed to induce this phenotype. Epithelial cells treatment with cytochalasin D caused the inhibition of B182 internalisation and caspase 3 activation. These results showed that this cell death required active S. Heidelberg B182 protein synthesis and bacterial internalisation. However sipB and sopB, usually involved in apoptosis induced by Salmonella were not overexpressed in B182, contrary to fimA and fliC. Comparative genome analysis showed numerous mutations as in rpoS which would be more investigated. The role of the hypermutator phenotype might be suspected to be implicated in these specific features. This result expands our knowledge about strong mutators frequently found in bacterial organisms isolated from clinical specimens. Copyright © 2015 Elsevier B.V. All rights reserved.
    Veterinary Microbiology 08/2015; DOI:10.1016/j.vetmic.2015.07.034 · 2.51 Impact Factor
  • Source
    • "This is the case of cytolysis of infected host cells due to pyroptosis (reviewed in Fink and Cookson 2005; Bergsbaken et al. 2009) or apoptotic secondary necrosis (reviewed in Silva 2010a). Pathogen-induced cytolysis of infected host cells has been reported in infections by Y. pestis (Zauberman et al. 2006; Bergsbaken and Cookson 2007; Bi et al. 2009), F. tularensis (Bar-Haim et al. 2008; Lai and Sjostedt 2003; Mariathasan et al. 2005; Henry et al. 2007; Santic et al. 2010), S. Thyphimurium (Brennan and Cookson 2000; Fink et al. 2008; Wu et al. 2010), B. cenocepacia (Kotrange et al. 2011), and B. pseudomallei (Sun et al. 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
    Immunobiology 06/2012; 218(3). DOI:10.1016/j.imbio.2012.05.011 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella enterica serovar Typhi (S. typhi) evades from innate immunity by expression of a variety of pathogenic factors. The "pR(ST98)" plasmid of S. typhi is involved in multidrug-resistant and virulence of S. typhi. However, its exact effect on host cell function remains elusive. Dendritic cells (DCs) play an important role in shaping immune response against Salmonella. For the purpose of investigation whether pR(ST98) might target DCs involved in adaptive immune response, murine DCs were infected with S. typhi wild type and mutant strains. S. typhi stimulation resulted in up-regulation of costimulatory molecules on DCs. S. typhi wild type resulted in decreased up-regulation of CD40, CD80, and CD86 expression. Experiments with S. typhi pR(ST98) mutant (S. typhi-Δ-pR(ST98)) and S. typhi-Δ-pR(ST98) with a complemented plasmid encoding pR(ST98) (S. typhi-c-pR(ST98)) revealed that pR(ST98) accounts for inhibition of surface molecule expression and functional maturity. S. typhi-Δ-pR(ST98) gave maximal levels of IL-12 and IFN-γ release compared with wild type S. typhi or the complemented strains. In contrast to IL-12 and IFN-γ, IL-10 secretion by S. typhi-Δ-pR(ST98)-infected DCs was significantly lower than induction by S. typhi wild type. This indicates that immunity in response to pR(ST98) is skewed away from a protective Th1 response. Moreover, infection with S. typhi-Δ-pR(ST98) induced autophagy in DCs. We herein demonstrate S. typhi pR(ST98) plays essential roles in modulating DCs maturation, activation, inflammatory responses, and autophagy. Together, these data prove that pR(ST98) targets functions of DCs that are required for T-cell activation. This might contribute to evasion of adaptive immune responses by S. typhi.
    Current Microbiology 05/2012; 65(2):133-40. DOI:10.1007/s00284-012-0136-1 · 1.42 Impact Factor
Show more


8 Reads
Available from