Article

Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing.

Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.
Genome Research (Impact Factor: 13.85). 07/2010; 20(7):981-8. DOI: 10.1101/gr.102921.109
Source: PubMed

ABSTRACT One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.

1 Bookmark
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Forward genetic screens in Drosophila melanogaster using ethyl methanesulfonate (EMS) mutagenesis are a powerful approach for identifying genes that modulate specific biological processes in an in vivo setting. The mapping of genes that contain randomly-induced point mutations has become more efficient in Drosophila thanks to the maturation and availability of many types of genetic tools. However, classic approaches to gene mapping are relatively slow and ultimately require extensive Sanger sequencing of candidate chromosomal loci. With the advent of new high-throughput sequencing techniques, it is increasingly efficient to directly re-sequence the whole genome of model organisms. This approach, in combination with traditional chromosomal mapping, has the potential to greatly simplify and accelerate mutation identification in mutants generated in EMS screens. Here we show that next-generation sequencing (NGS) is an accurate and efficient tool for high-throughput sequencing and mutation discovery in Drosophila melanogaster. As a test case, mutant strains of Drosophila that exhibited long-term survival of severed peripheral axons were identified in a forward EMS mutagenesis. All mutants were recessive and fell into a single lethal complementation group, which suggested that a single gene was responsible for the protective axon degenerative phenotype. Whole genome sequencing of these genomes identified the underlying gene ect4. To improve the process of genome wide mutation identification, we developed Genomes Management Application (GEM.app, https://genomics.med.miami.edu), a graphical online user interface to a custom query framework. Using a custom GEM.app query, we were able to identify that each mutant carried a unique non-sense mutation in the gene ect4 (dSarm), which was recently shown by Osterloh et al. to be essential for the activation of axonal degeneration. Our results demonstrate the current advantages and limitations of NGS in Drosophila and we introduce GEM.app as a simple yet powerful genomics analysis tool for the Drosophila community. At a current cost of <$1,000 per genome, NGS should thus become a standard gene discovery tool in EMS induced genetic forward screens.
    Biology 12/2012; 1(3):766-77.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural variants of crops are generated from wild progenitor plants under both natural and human selection. Diverse crops that are able to adapt to various environmental conditions are valuable resources for crop improvements to meet the food demands of the increasing human population. With the completion of reference genome sequences, the advent of high-throughput sequencing technology now enables rapid and accurate resequencing of a large number of crop genomes to detect the genetic basis of phenotypic variations in crops. Comprehensive maps of genome variations facilitate genome-wide association studies of complex traits and functional investigations of evolutionary changes in crops. These advances will greatly accelerate studies on crop designs via genomics-assisted breeding. Here, we first discuss crop genome studies and describe the development of sequencingbased genotyping and genome-wide association studies in crops. We then review sequencing-based crop domestication studies and offer a perspective on genomics-driven crop designs. Expected final online publication date for the Annual Review of Plant Biology Volume 65 is April 29, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Plant Biology 11/2013; · 18.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of Next-Generation Sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of 1.) a sequenced genome; 2.) a strongly penetrant and easily measurable phenotype; and 3.) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the post genomic era.
    Genetics 07/2013; · 4.87 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Oct 20, 2014