Assessment of Planning Target Volume Margins for Intensity-Modulated Radiotherapy of the Prostate Gland: Role of Daily Inter- and Intrafraction Motion

Department of Radiation Medicine, Oregon Health and Science University, Portland, OR 97239-3098, USA.
International journal of radiation oncology, biology, physics (Impact Factor: 4.26). 12/2010; 78(5):1579-85. DOI: 10.1016/j.ijrobp.2010.02.001
Source: PubMed


To determine planning target volume margins for prostate intensity-modulated radiotherapy based on inter- and intrafraction motion using four daily localization techniques: three-point skin mark alignment, volumetric imaging with bony landmark registration, volumetric imaging with implanted fiducial marker registration, and implanted electromagnetic transponders (beacons) detection.
Fourteen patients who underwent definitive intensity-modulated radiotherapy for prostate cancer formed the basis of this study. Each patient was implanted with three electromagnetic transponders and underwent a course of 39 treatment fractions. Daily localization was based on three-point skin mark alignment followed by transponder detection and patient repositioning. Transponder positioning was verified by volumetric imaging with cone-beam computed tomography of the pelvis. Relative motion between the prostate gland and bony anatomy was quantified by offline analyses of daily cone-beam computed tomography. Intratreatment organ motion was monitored continuously by the Calypso® System for quantification of intrafraction setup error.
As expected, setup error (that is, inter- plus intrafraction motion, unless otherwise stated) was largest with skin mark alignment, requiring margins of 7.5 mm, 11.4 mm, and 16.3 mm, in the lateral (LR), longitudinal (SI), and vertical (AP) directions, respectively. Margin requirements accounting for intrafraction motion were smallest for transponder detection localization techniques, requiring margins of 1.4 mm (LR), 2.6 mm (SI), and 2.3 mm (AP). Bony anatomy alignment required 2.1 mm (LR), 9.4 mm (SI), and 10.5 mm (AP), whereas image-guided marker alignment required 2.8 mm (LR), 3.7 mm (SI), and 3.2 mm (AP). No marker migration was observed in the cohort.
Clinically feasible, rapid, and reliable tools such as the electromagnetic transponder detection system for pretreatment target localization and, subsequently, intratreatment target location monitoring allow clinicians to reduce irradiated volumes and facilitate safe dose escalation, where appropriate.

15 Reads
  • Source
    • "Therefore, the margin on the tumor should be determined after full consideration of the probability of normal tissue damage. In terms of the necessary margin that would account for interfraction prostate movement after bone alignment, the required margins in the RL direction have been reported to be significantly smaller than those in the SI and AP directions [20,21], with values ranging from 1.6 to 3.1 mm in the RL direction, from 8.9 to 8.92 mm in the SI direction, and from 10.2 to 10.7 mm in the AP direction. The required margin in the RL direction was less than in other directions in the present study also, but the magnitudes were smaller than in other studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the effect of a rectal enema on interfraction prostate movement in bone alignment (BA) for prostate radiotherapy (RT), we analyzed the spatial difference in prostates in a bone-matched setup. We performed BA retrospectively with data from prostate cancer patients who underwent image-guided RT (IGRT). The prostate was identified with implanted fiducial markers. The setup for the IGRT was conducted with the matching of three fiducial markers on RT planning computed tomography images and those on two oblique kV x-ray images. Offline BA was performed at the same position. The coordinates of a virtual prostate in BA and a real prostate were obtained by use of the ExaxTrac/NovalisBody system, and the distance between them was calculated as the spatial difference. Interfraction prostate displacement was drawn from the comparison of the spatial differences. A total of 15 patients with localized prostate cancer treated with curative hypofractionated IGRT were enrolled. A total of 420 fractions were analyzed. The mean of the interfraction prostate displacements after BA was 3.12±2.00 mm (range, 0.20-10.53 mm). The directional difference was profound in the anterior-posterior and supero-inferior directions (2.14±1.73 mm and 1.97±1.44 mm, respectively) compared with the right-left direction (0.26±0.22 mm, p<0.05). The required margin around the clinical target volume was 4.97 mm with the formula of van Herk et al. The interfraction prostate displacement was less frequent when a rectal enema was performed before the procedure. A rectal enema can be used to reduce interfraction prostate displacement and resulting clinical target volume-to-planning target volume margin.
    Korean journal of urology 01/2014; 55(1):23-8. DOI:10.4111/kju.2014.55.1.23
  • Source
    • "Simulation and radiotherapy planning techniques have been reported previously [12]. In brief, simulation computed tomography (CT) images were acquired in the treatment position with the patient supine and transferred to a three-dimensional dosimetric planning platform (Pinnacle3 v7.6, Philips Medical Systems, Andover, MA or Eclipse v8.6/8.9, "
    [Show abstract] [Hide abstract]
    ABSTRACT: The rapid adoption of image-guidance in prostate intensity-modulated radiotherapy (IMRT) results in longer treatment times, which may result in larger intrafraction motion, thereby negating the advantage of image-guidance. This study aims to qualify and quantify the contribution of image-guidance to the temporal dependence of intrafraction motion during prostate IMRT. One-hundred and forty-three patients who underwent conventional IMRT (n=67) or intensity-modulated arc therapy (IMAT/RapidArc, n=76) for localized prostate cancer were evaluated. Intrafraction motion assessment was based on continuous RL (lateral), SI (longitudinal), and AP (vertical) positional detection of electromagnetic transponders at 10 Hz. Daily motion amplitudes were reported as session mean, median, and root-mean-square (RMS) displacements. Temporal effect was evaluated by categorizing treatment sessions into 4 different classes: IMRTc (transponder only localization), IMRTcc (transponder + CBCT localization), IMATc (transponder only localization), or IMATcc (transponder + CBCT localization). Mean/median session times were 4.15/3.99 min (IMATc), 12.74/12.19 min (IMATcc), 5.99/5.77 min (IMRTc), and 12.98/12.39 min (IMRTcc), with significant pair-wise difference (p<0.0001) between all category combinations except for IMRTcc vs. IMATcc (p>0.05). Median intrafraction motion difference between CBCT and non-CBCT categories strongly correlated with time for RMS (t-value=17.29; p<0.0001), SI (t-value=-4.25; p<0.0001), and AP (t-value=2.76; p<0.0066), with a weak correlation for RL (t-value=1.67; p=0.0971). Treatment time reduction with non-CBCT treatment categories showed reductions in the observed intrafraction motion: systematic error (Sigma)<0.6 mm and random error (sigma)<1.2 mm compared with <=0.8 mm and <1.6 mm, respectively, for CBCT-involved treatment categories. For treatment durations >4-6 minutes, and without any intrafraction motion mitigation protocol in place, patient repositioning is recommended, with at least the acquisition of the lateral component of an orthogonal image pair in the absence of volumetric imaging.
    BMC Medical Physics 09/2013; 13(1):4. DOI:10.1186/1756-6649-13-4
  • Source
    • "To validate the adequacy of the applied PTV margin, we calculated the required PTV margin using the van Herk formula to compare prostate motion with other reports, which often report Σ and σ values [8, 18–24], because we believe that the calculated PTV margin expresses the total possible variation of prostate motion simply. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the interfractional prostate motion of patients immobilized in the prone position using a thermoplastic shell. A total of 24 patients with prostate calcifications detectable using a kilo-voltage X-ray image-guidance system (ExacTrac X-ray system) were examined. Daily displacements of the calcification within the prostate relative to pelvic bony structures were calculated by the ExacTrac X-ray system. The average displacement and standard deviation (SD) in each of the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were calculated for each patient. Based on the results of interfractional prostate motion, we also calculated planning target volume (PTV) margins using the van Herk formula and examined the validity of the PTV margin of our institute (a 9-mm margin everywhere except posteriorly, where a 6-mm margin was applied). In total, 899 data measurements from 24 patients were obtained. The average prostate displacements ± SD relative to bony structures were 2.8 ± 3.3, -2.0 ± 2.0 and 0.2 ± 0.4 mm, in the SI, AP and LR directions, respectively. The required PTV margins were 9.7, 6.1 and 1.4 mm in the SI, AP and LR directions, respectively. The clinical target volumes of 21 patients (87.5%) were located within the PTV for 90% or more of all treatment sessions. Interfractional prostate motion in the prone position with a thermoplastic shell was equivalent to that reported for the supine position. The PTV margin of our institute is considered appropriate for alignment, based on bony structures.
    Journal of Radiation Research 07/2013; 55(1). DOI:10.1093/jrr/rrt089 · 1.80 Impact Factor
Show more