Article

Anodal transcranial direct current stimulation of the motor cortex ameliorates chronic pain and reduces short intracortical inhibition.

Department of Clinical Neurophysiology, Georg-August University, 37075 Göttingen, Germany.
Journal of pain and symptom management (Impact Factor: 2.42). 05/2010; 39(5):890-903. DOI: 10.1016/j.jpainsymman.2009.09.023
Source: PubMed

ABSTRACT Consecutive sessions of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) may be a suitable therapy to treat chronic pain, as it can modulate neural activities in the stimulated and interconnected regions.
The present study investigated the analgesic effect of five consecutive days of anodal/sham tDCS using subjective (visual analog scale [VAS]) and objective (cortical excitability measured by transcranial magnetic stimulation [TMS]) measurements.
Patients with therapy-resistant chronic pain syndromes (trigeminal neuralgia, poststroke pain syndrome, back pain, fibromyalgia) participated. As this clinical trial was an exploratory study, statistical analyses implemented exploratory methods. Twelve patients, who underwent both anodal and sham tDCS, were analyzed using a crossover design. An additional nine patients had only anodal or sham stimulation. tDCS was applied over the hand area of the M1 for 20 minutes, at 1mA for five consecutive days, using a randomized, double-blind design. Pain was assessed daily using a VAS rating for one month before, during, and one month post-stimulation. M1 excitability was determined using paired-pulse TMS.
Anodal tDCS led to a greater improvement in VAS ratings than sham tDCS, evident even three to four weeks post-treatment. Decreased intracortical inhibition was demonstrated after anodal stimulation, indicating changes in cortico-cortical excitability. No patient experienced severe adverse effects; seven patients suffered from light headache after anodal and six after sham stimulation.
Results confirm that five daily sessions of tDCS over the hand area of the M1 can produce long-lasting pain relief in patients with chronic pain.

1 Bookmark
 · 
156 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has been shown to alter cortical excitability and activity via application of weak direct currents. Beyond intracortical effects, functional imaging as well as behavioral studies are suggesting additional tDCS-driven alterations of subcortical areas, however, direct evidence for such effects is scarce. We aimed to investigate the impact of tDCS on cortico-subcortical functional networks by seed functional connectivity analysis of different striatal and thalamic regions to prove tDCS-induced alterations of the cortico-striato-thalamic circuit. fMRI resting state data sets were acquired immediately before and after 10 min of bipolar tDCS during rest, with the anode/cathode placed over the left primary motor cortex (M1) and the cathode/anode over the contralateral frontopolar cortex. To control for possible placebo effects, an additional sham stimulation session was carried out. Functional coupling between the left thalamus and the ipsilateral primary motor cortex (M1) significantly increased following anodal stimulation over M1. Additionally, functional connectivity between the left caudate nucleus and parietal association cortices was significantly strengthened. In contrast, cathodal tDCS over M1 decreased functional coupling between left M1 and contralateral putamen. In summary, in this study, we show for the first time that tDCS modulates functional connectivity of cortico-striatal and thalamo-cortical circuits. Here we highlight that anodal tDCS over M1 is capable of modulating elements of the cortico-striato-thalamo-cortical functional motor circuit. Hum Brain Mapp 33:2499-2508, 2012. © 2011 Wiley Periodicals, Inc.
    Human Brain Mapping 09/2011; 33(10):2499-508. · 6.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that activates neurons via generation of brief pulses of high-intensity magnetic field. If these pulses are applied in a repetitive fashion (rTMS), persistent modulation of neural excitability can be achieved. The technique has proved beneficial in the treatment of a number of neurological and psychiatric conditions. However, the effect of rTMS on excitability and the other performance indicators shows a considerable degree of variability across different sessions and subjects. The frequency of stimulation has always been considered as the main determinant of the direction of excitability modulation. However, interactions exist between frequency and several other stimulation parameters that also influence the degree of modulation. In addition, the spatial interaction of the transient electric field induced by the TMS pulse with the cortical neurons is another contributor to variability. Consideration of all of these factors is necessary in order to improve the consistency of the conditioning effect and to better understand the outcomes of investigations with rTMS. These user-controlled sources of variability are discussed against the background of the mechanisms that are believed to drive the excitability changes. The mechanism behind synaptic plasticity is commonly accepted as the driver of sustained excitability modulation for rTMS and indeed, plasticity and rTMS share many characteristics, but definitive evidence is lacking for this. It is more likely that there is a multiplicity of mechanisms behind the action of rTMS. The different mechanisms interact with each other and this will contribute to the variability of rTMS-induced excitability changes. This review investigates the links between rTMS and synaptic plasticity, describes their similarities and differences, and highlights a neglected contribution of the membrane potential. In summary, the principal aims of this review are (i) to discuss the different experimental and subject-related factors that contribute to the variability of excitability modulation induced by rTMS, and (ii) to discuss a generalized underlying mechanism for the excitability modulation.
    Progress in Neurobiology 11/2010; 93(1):59-98. · 9.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Objective The primary aim of this systematic review was to evaluate the effects of anodal transcranial direct current stimulation (a-tDCS) on sensory (STh) and pain thresholds (PTh) in healthy individuals and pain levels (PL) in patients with chronic pain. Methods Electronic databases were searched for a-tDCS studies. Methodological quality was examined using the PEDro and Downs and Black (D&B) assessment tools. Results a-tDCS of the primary motor cortex (M1) increases both STh (P<0.005, with the effect size of 22.19%) and PTh (P<0.001, effect size of 19.28%). In addition, STh was increased by a-tDCS of the primary sensory cortex (S1) (P<0.05 with an effect size of 4.34). Likewise, PL decreased significantly in the patient group following application of a-tDCS to both the M1 and dorsolateral prefrontal cortex (DLPFC). The average decrease in visual analogue score was 14.9 % and 19.3 % after applying a-tDCS on the M1 and DLPFC. Moreover, meta-analysis showed that in all subgroups (except a-tDCS of S1) active a-tDCS and sham stimulation produced significant differences. Conclusions This review provides evidence for the effectiveness of a-tDCS in increasing STh/PTh in healthy group and decreasing PL in patients. However, due to small sample sizes in the included studies, our results should be interpreted cautiously. Given the level of blinding did not considered in inclusion criteria, the result of current study should be interpreted with caution. Significance site of stimulation should have a differential effect over pain relief. Keywords Transcranial direct current stimulation (tDCS); Transcranial magnetic stimulation (TMS); Corticospinal excitability; Pain level; Sensory threshold; Pain threshold
    Clinical Neurophysiology 02/2014; · 3.14 Impact Factor

Full-text

View
224 Downloads
Available from
May 20, 2014