Article

Anodal Transcranial Direct Current Stimulation of the Motor Cortex Ameliorates Chronic Pain and Reduces Short Intracortical Inhibition

Department of Clinical Neurophysiology, Georg-August University, 37075 Göttingen, Germany.
Journal of pain and symptom management (Impact Factor: 2.74). 05/2010; 39(5):890-903. DOI: 10.1016/j.jpainsymman.2009.09.023
Source: PubMed

ABSTRACT Consecutive sessions of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) may be a suitable therapy to treat chronic pain, as it can modulate neural activities in the stimulated and interconnected regions.
The present study investigated the analgesic effect of five consecutive days of anodal/sham tDCS using subjective (visual analog scale [VAS]) and objective (cortical excitability measured by transcranial magnetic stimulation [TMS]) measurements.
Patients with therapy-resistant chronic pain syndromes (trigeminal neuralgia, poststroke pain syndrome, back pain, fibromyalgia) participated. As this clinical trial was an exploratory study, statistical analyses implemented exploratory methods. Twelve patients, who underwent both anodal and sham tDCS, were analyzed using a crossover design. An additional nine patients had only anodal or sham stimulation. tDCS was applied over the hand area of the M1 for 20 minutes, at 1mA for five consecutive days, using a randomized, double-blind design. Pain was assessed daily using a VAS rating for one month before, during, and one month post-stimulation. M1 excitability was determined using paired-pulse TMS.
Anodal tDCS led to a greater improvement in VAS ratings than sham tDCS, evident even three to four weeks post-treatment. Decreased intracortical inhibition was demonstrated after anodal stimulation, indicating changes in cortico-cortical excitability. No patient experienced severe adverse effects; seven patients suffered from light headache after anodal and six after sham stimulation.
Results confirm that five daily sessions of tDCS over the hand area of the M1 can produce long-lasting pain relief in patients with chronic pain.

Full-text

Available from: Andrea Antal, Jun 11, 2015
1 Follower
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to investigate the efficacy of repetitive cathodal direct current stimulation (rctDCS) over the visual cortex as a prophylactic treatment in patients with menstrual migraine. 20 female patients were recruited in this double-blind, placebo-controlled study and were assigned to receive either cathodal or sham stimulation. Over 3 menstrual cycles, tDCS with 2mA intensity and 20min duration was applied to the visual cortex of the patients, in 5 consecutive sessions 1-5days prior to the first day of their menstruation. The primary endpoint of the study was the frequency of the migraine attacks at the end of the treatment period, however, additional parameters, such as the number of migraine related days and the intensity of pain were also recorded 3months before, during and 3months post-treatment. Visual cortex excitability was determined by measuring the phosphene thresholds (PTs) using single pulse transcranial magnetic stimulation (TMS) over the visual cortex. Sixteen patients completed the study. A significant decrease in the number of migraine attacks (p=0.04) was found in the cathodal group compared to baseline but not compared to sham (p=0.053). In parallel the PTs increased significantly in this group, compared to the sham group (p<0.05). Our results indicate that prophylactic treatment with rctDCS over the visual cortex might be able to decrease the number of attacks in patients with menstrual migraine, probably by modifying cortical excitability. Copyright © 2015 Elsevier B.V. All rights reserved.
    Journal of the neurological sciences 05/2015; DOI:10.1016/j.jns.2015.05.009 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effectiveness of transcranial direct current stimulation alone and in combination with cognitive behavioural management in patients with non-specific chronic low back pain. Double blind parallel group randomised controlled trial with six months' follow-up conducted May 2011-March 2013. Participants, physiotherapists, assessors, and analyses were blinded to group allocation. Interdisciplinary chronic pain centre. 135 participants with non-specific chronic low back pain >12 weeks were recruited from 225 patients assessed for eligibility. Participants were randomised to receive anodal (20 minutes to motor cortex at 2 mA) or sham transcranial direct current stimulation (identical electrode position, stimulator switched off after 30 seconds) for five consecutive days immediately before cognitive behavioural management (four week multidisciplinary programme of 80 hours). Two primary outcome measures of pain intensity (0-100 visual analogue scale) and disability (Oswestry disability index) were evaluated at two primary endpoints after stimulation and after cognitive behavioural management. Analyses of covariance with baseline values (pain or disability) as covariates showed that transcranial direct current stimulation was ineffective for the reduction of pain (difference between groups on visual analogue scale 1 mm (99% confidence interval -8.69 mm to 6.3 mm; P=0.68)) and disability (difference between groups 1 point (-1.73 to 1.98; P=0.86)) and did not influence the outcome of cognitive behavioural management (difference between group 3 mm (-10.32 mm to 6.73 mm); P=0.58; difference between groups on Oswestry disability index 0 point (-2.45 to 2.62); P=0.92). The stimulation was well tolerated with minimal transitory side effects. This results of this trial on the effectiveness of transcranial direct current stimulation for the reduction of pain and disability do not support its clinical use for managing non-specific chronic low back pain.Trial registration Current controlled trials ISRCTN89874874. © Luedtke et al 2015.
    BMJ (online) 04/2015; 350(apr16 1):h1640. DOI:10.1136/bmj.h1640 · 16.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stimulation of the primary motor cortex (M1) has been shown to reduce the pain of neuropathy in multiple studies. There are several methods of stimulation both invasive and non-invasive. Recent work by this laboratory has seen that 40% of a sample of chronic neuropathic pain patients responded positively to non-invasive repetitive transcranial magnetic stimulation (rTMS) to the motor cortex with a reduction in pain levels by at least 20%. The effect however is short lived and multiple return visits are necessary to maintain this response. Transcranial direct current stimulation (tDCS) offers a more mobile method of motor cortex stimulation and is similarly non-invasive. The protocol described is designed to assess the analgesic effect of a home-based tDCS treatment device on chronic neuropathic pain in both responders and non-responders to previous TMS treatment. This article reports the protocol for a randomised, sham-controlled, double-blinded crossover study in which patients with chronic neuropathic pain (n = 24) will receive anodal, cathodal and sham tDCS over M1. All patients will have previously completed a study of rTMS of the motor cortex and have been designated as responders or non-responders to this modality. Patients receive all three tDCS stimulation types by self-administration. We assess the effect on pain scores [numerical rating scale (NRS)], self reported health status (Short Form-36 Health Survey) and anxiety/depression (Hospital Anxiety and Depression Scale). A linear mixed model with fixed effects will analyse changes in pain scores from pre- to post- interventions. Analysis will be carried out on an intention-to-treat basis. A proportion analysis will also be carried out with patients separated into either responders or non-responders to previous TMS. Safety will be assessed throughout the study by monitoring of adverse events. The result of this trial will assess the efficacy of self-administered tDCS of the motor cortex in the treatment of chronic neuropathic pain and also provide insight into whether a potential differential effect is seen in patients that have previously been shown to be either responsive or non-responsive to rTMS over the same area. ISRCTN56839387 date 27 January 2014. First patient randomised to trial 30 October 2012.
    Trials 04/2015; 16(1):186. DOI:10.1186/s13063-015-0710-5 · 2.12 Impact Factor