Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium.

Trinity College Institute of Neuroscience, School of Biochemistry & Immunology, Trinity College Dublin, Dublin, Ireland.
Neurobiology of aging (Impact Factor: 5.94). 03/2012; 33(3):603-616.e3. DOI: 10.1016/j.neurobiolaging.2010.04.002
Source: PubMed

ABSTRACT Delirium is an acute, severe neuropsychiatric syndrome, characterized by cognitive deficits, that is highly prevalent in aging and dementia and is frequently precipitated by peripheral infections. Delirium is poorly understood and the lack of biologically relevant animal models has limited basic research. Here we hypothesized that synaptic loss and accompanying microglial priming during chronic neurodegeneration in the ME7 mouse model of prion disease predisposes these animals to acute dysfunction in the region of prior pathology upon systemic inflammatory activation. Lipopolysaccharide (LPS; 100 μg/kg) induced acute and transient working memory deficits in ME7 animals on a novel T-maze task, but did not do so in normal animals. LPS-treated ME7 animals showed heightened and prolonged transcription of inflammatory mediators in the central nervous system (CNS), compared with LPS-treated normal animals, despite having equivalent levels of circulating cytokines. The demonstration that prior synaptic loss and microglial priming are predisposing factors for acute cognitive impairments induced by systemic inflammation suggests an important animal model with which to study aspects of delirium during dementia.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Exaggerated central nervous system (CNS) inflammatory responses to peripheral stressors may be implicated in delirium. This study hypothesised that the IL-1β family is involved in delirium, predicting increased levels of interleukin-1β (IL-1β) and decreased IL-1 receptor antagonist (IL-1ra) in the cerebrospinal fluid (CSF) of elderly patients with acute hip fracture. We also hypothesised that Glial Fibrillary Acidic Protein (GFAP) and interferon-γ (IFN-γ) would be increased, and insulin-like growth factor 1 (IGF-1) would be decreased. Methods Participants with acute hip fracture aged > 60 (N = 43) were assessed for delirium before and 3-4 days after surgery. CSF samples were taken at induction of spinal anaesthesia. Enzyme-linked immunosorbent assays (ELISA) were used for protein concentrations. Results Prevalent delirium was diagnosed in eight patients and incident delirium in 17 patients. CSF IL-1β was higher in patients with incident delirium compared to never delirium (incident delirium 1.74 pg/ml (1.02-1.74) vs. prevalent 0.84 pg/ml (0.49-1.57) vs. never 0.66 pg/ml (0-1.02), Kruskal-Wallis p = 0.03). CSF:serum IL-1β ratios were higher in delirious than non-delirious patients. CSF IL-1ra was higher in prevalent delirium compared to incident delirium (prevalent delirium 70.75 pg/ml (65.63-73.01) vs. incident 31.06 pg/ml (28.12-35.15) vs. never 33.98 pg/ml (28.71-43.28), Kruskal-Wallis p = 0.04). GFAP was not increased in delirium. IFN-γ and IGF-1 were below the detection limit in CSF. Conclusion This study provides novel evidence of CNS inflammation involving the IL-1β family in delirium and suggests a rise in CSF IL-1β early in delirium pathogenesis. Future larger CSF studies should examine the role of CNS inflammation in delirium and its sequelae.
    Journal of Psychosomatic Research 09/2014; · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Delirium is a profound neuropsychiatric disturbance precipitated by acute illness. Although dementia is the major risk factor this has typically been considered a binary quantity (i.e. cognitively impaired versus cognitively normal) with respect to delirium risk. We used humans and mice to address the hypothesis that the severity of underlying neurodegenerative changes and/or cognitive impairment progressively alters delirium risk. Methods Humans in a population-based longitudinal study, Vantaa 85+, were followed for incident delirium. Odds for reporting delirium at follow-up (outcome) were modeled using random-effects logistic regression, where prior cognitive impairment measured by MMSE (exposure) was considered. To address whether underlying neurodegenerative pathology increased susceptibility to acute cognitive change, mice at three stages of neurodegenerative disease progression (ME7 model of neurodegeneration: controls, 12 and 16 weeks) were assessed for acute cognitive dysfunction upon systemic inflammation induced by bacterial lipopolysaccharide (LPS; 100μg/kg). Synaptic and axonal correlates of susceptibility to acute dysfunction were assessed using immunohistochemistry. Results In the Vantaa cohort, 465 persons (88.4±2.8 years) completed MMSE at baseline. For every MMSE point lost, risk of incident delirium increased by 5% (p=0.02). LPS precipitated severe and fluctuating cognitive deficits in 16w ME7 mice but lower incidence or no deficits in 12w ME7 and controls respectively. This was associated with progressive thalamic synaptic loss and axonal pathology. Conclusions A human population-based cohort with graded severity of existing cognitive impairment and a mouse model with progressing neurodegeneration both indicate that the risk of delirium increases with greater severity of pre-existing cognitive impairment and neuropathology.
    American Journal of Geriatric Psychiatry 08/2014; · 4.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delirium is a common and morbid condition in elderly hospitalized patients. Its pathophysiology is poorly understood but inflammation has been implicated based on a clinical association with systemic infection and surgery and preclinical data showing that systemic inflammation adversely affects hippocampus-dependent memory. However, clinical manifestations and imaging studies point to abnormalities not in the hippocampus but in cortical circuits. We therefore tested the hypothesis that systemic inflammation impairs prefrontal cortex function by assessing attention and executive function in aged animals. Aged (24-month-old) Fischer-344 rats received a single intraperitoneal injection of lipopolysaccharide (LPS; 50 μg/kg) or saline and were tested on the attentional set-shifting task (AST), an index of integrity of the prefrontal cortex, on days 1-3 post-injection. Plasma and frontal cortex concentrations of the cytokine TNFα and the chemokine CCL2 were measured by ELISA in separate groups of identically treated, age-matched rats. LPS selectively impaired reversal learning and attentional shifts without affecting discrimination learning in the AST, indicating a deficit in attention and cognitive flexibility but not learning globally. LPS increased plasma TNFα and CCL2 acutely but this resolved within 24-48 h. TNFα in the frontal cortex did not change whereas CCL2 increased nearly threefold 2 h after LPS but normalized by the time behavioral testing started 24 h later. Together, our data indicate that systemic inflammation selectively impairs attention and executive function in aged rodents and that the cognitive deficit is independent of concurrent changes in frontal cortical TNFα and CCL2. Because inattention is a prominent feature of clinical delirium, our data support a role for inflammation in the pathogenesis of this clinical syndrome and suggest this animal model could be useful for studying that relationship further.
    Frontiers in Aging Neuroscience 01/2014; 6:107. · 5.20 Impact Factor


Available from