Article

Sequence embedding for fast construction of guide trees for multiple sequence alignment.

UCD Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland. .
Algorithms for Molecular Biology (Impact Factor: 1.61). 01/2010; 5:21. DOI: 10.1186/1748-7188-5-21
Source: DOAJ

ABSTRACT The most widely used multiple sequence alignment methods require sequences to be clustered as an initial step. Most sequence clustering methods require a full distance matrix to be computed between all pairs of sequences. This requires memory and time proportional to N2 for N sequences. When N grows larger than 10,000 or so, this becomes increasingly prohibitive and can form a significant barrier to carrying out very large multiple alignments.
In this paper, we have tested variations on a class of embedding methods that have been designed for clustering large numbers of complex objects where the individual distance calculations are expensive. These methods involve embedding the sequences in a space where the similarities within a set of sequences can be closely approximated without having to compute all pair-wise distances.
We show how this approach greatly reduces computation time and memory requirements for clustering large numbers of sequences and demonstrate the quality of the clusterings by benchmarking them as guide trees for multiple alignment. Source code is available for download from http://www.clustal.org/mbed.tgz.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sequence alignment is a crucial task in a number of biological analyses like secondary structure prediction, domain searching, phylogeny, etc. MSAProbs is currently the most accurate alignment algorithm, but its effectiveness is obtained at the expense of computational time. In the paper we present QuickProbs, the variant of MSAProbs customised for graphics processors. We selected the two most time consuming stages of MSAProbs to be redesigned for GPU execution: the posterior matrices calculation and the consistency transformation. Experiments on three popular benchmarks (BAliBASE, PREFAB, OXBench-X) on quad-core PC equipped with high-end graphics card show QuickProbs to be 5.7 to 9.7 times faster than original CPU-parallel MSAProbs. Additional tests performed on several protein families from Pfam database give overall speed-up of 6.7. Compared to other algorithms like MAFFT, MUSCLE, or ClustalW, QuickProbs proved to be much more accurate at similar speed. Additionally we introduce a tuned variant of QuickProbs which is significantly more accurate on sets of distantly related sequences than MSAProbs without exceeding its computation time. The GPU part of QuickProbs was implemented in OpenCL, thus the package is suitable for graphics processors produced by all major vendors.
    PLoS ONE 01/2014; 9(2):e88901. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MOTIVATION: Recent developments in sequence alignment software have made possible multiple sequence alignments of over 100,000 sequences in reasonable times. At present there are no systematic analyses concerning the scalability of the alignment quality as the number of aligned sequences is increased. RESULTS: We benchmarked a wide range of widely used MSA packages using a selection of protein families with some known structures and find that the accuracy of such alignments decreases markedly as the number of sequences grows. This is more or less true of all packages and protein families. The phenomenon is mostly due to the accumulation of alignment errors, rather than problems in guide-tree construction. This is partly alleviated by using iterative refinement or selectively adding sequences. The average accuracy of progressive methods by comparison with structure-based benchmarks can be improved by incorporating information derived from high-quality structural alignments of sequences with solved structures. This suggests that the availability of high quality curated alignments will have to complement algorithmic and/or software developments in the long term. AVAILABILITY: Benchmark data used in this study is available at http://www.clustal.org/omega/homfam-20110613-25.tar.gz and http://www.clustal.org/omega/bali3fam-26.tar.gz. CONTACT: fabian.sievers@ucd.ie.
    Bioinformatics 02/2013; · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sequence alignment (MSA) is an extremely useful tool for molecular and evolutionary biology and there are several programs and algorithms available for this purpose. Although previous studies have compared the alignment accuracy of different MSA programs, their computational time and memory usage have not been systematically evaluated. Given the unprecedented amount of data produced by next generation deep sequencing platforms, and increasing demand for large-scale data analysis, it is imperative to optimize the application of software. Therefore, a balance between alignment accuracy and computational cost has become a critical indicator of the most suitable MSA program. We compared both accuracy and cost of nine popular MSA programs, namely CLUSTALW, CLUSTAL OMEGA, DIALIGN-TX, MAFFT, MUSCLE, POA, Probalign, Probcons and T-Coffee, against the benchmark alignment dataset BAliBASE and discuss the relevance of some implementations embedded in each program's algorithm. Accuracy of alignment was calculated with the two standard scoring functions provided by BAliBASE, the sum-of-pairs and total-column scores, and computational costs were determined by collecting peak memory usage and time of execution. Our results indicate that mostly the consistency-based programs Probcons, T-Coffee, Probalign and MAFFT outperformed the other programs in accuracy. Whenever sequences with large N/C terminal extensions were present in the BAliBASE suite, Probalign, MAFFT and also CLUSTAL OMEGA outperformed Probcons and T-Coffee. The drawback of these programs is that they are more memory-greedy and slower than POA, CLUSTALW, DIALIGN-TX, and MUSCLE. CLUSTALW and MUSCLE were the fastest programs, being CLUSTALW the least RAM memory demanding program. Based on the results presented herein, all four programs Probcons, T-Coffee, Probalign and MAFFT are well recommended for better accuracy of multiple sequence alignments. T-Coffee and recent versions of MAFFT can deliver faster and reliable alignments, which are specially suited for larger datasets than those encountered in the BAliBASE suite, if multi-core computers are available. In fact, parallelization of alignments for multi-core computers should probably be addressed by a higher number of programs in a near future, which will certainly improve performance significantly.
    Algorithms for Molecular Biology 03/2014; 9(1):4. · 1.61 Impact Factor

Full-text (4 Sources)

View
69 Downloads
Available from
Jun 1, 2014