Functional characterisation of cell cycle-related kinase (CCRK) in colorectal cancer carcinogenesis

Integrative Chemical Biology Laboratory, Department of Chemistry, The University of Hong Kong, China.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.82). 06/2010; 46(9):1752-61. DOI: 10.1016/j.ejca.2010.04.007
Source: PubMed

ABSTRACT Cell cycle-related kinase (CCRK) is a newly identified protein kinase homologous to Cdk7. We have previously shown that CCRK is a candidate oncogene in human glioblastoma. However, whether CCRK is a bona fide oncogene remains to be tested. The aim of this study was to investigate the role of CCRK in human colorectal cancer carcinogenesis. By Western blotting, we analysed the expression profile of CCRK protein in 10 colorectal cancer tissue samples and their adjacent normal colon tissues and in seven colorectal cancer cell lines. CCRK protein expression was also investigated by immunohistochemistry in a colorectal tissue microarray, which contained 120 cases of primary colorectal cancer and adjacent normal colorectal mucosa. The effects of CCRK knock-down on cell cycle profile and proliferation of colorectal cancer cells were examined by transfecting LoVo and DLD1 human colorectal cancer cell lines by either short-hairpin RNA (shCCRK) or small interfering RNA targeting CCRK (siCCRK). We found that CCRK protein levels were elevated by more than 1.5-fold in 70% of colorectal cancer patient samples examined and CCRK was detectable in all seven colorectal cancer cell lines tested. Colorectal tissue microarray indicated that overexpression of CCRK was detected in 62/109 (56.9%) of informative colorectal cancer cases and was significantly associated with the tumour pT and pN status (p<0.05). Suppression of CCRK by siCCRK led to G1 phase cell cycle arrest and reduced cell growth. Consistently, stable clones of LoVo and DLD1 cells expressing shCCRK exhibited decreased cell proliferation rates. Furthermore, we showed that CCRK is required for the phosphorylation of Cdk2 (on Thr-160) and Rb (on Ser-795) and the expression of cyclin E. These results suggest for the first time that CCRK is involved in colorectal cancer carcinogenesis and G1/S cell cycle transition by regulating Cdk2, cyclin E and Rb.

  • Source
    • "Therefore, the up-regulation of these four transcripts suggested a protective response of quercetin. There are no reports in the literature on genotoxic or carcinogenic responses related to regulation of the genes Nfkbib and Pol2r, while up-regulation of Cdk7 is associated with carcinogenesis (An et al., 2010). It should also be taken in consideration that 5% of the transcripts will be regulated by chance, since a statistical threshold at p-value of 0.05 was used. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Given the positive results of quercetin in in vitro genotoxicity studies, the in vivo genotoxic properties of this important dietary flavonoid warrant testing, especially considering possible high intake via widely available food supplements. Here, this was done by transcriptome analyses of the most relevant tissues, liver and small intestine, of quercetin supplemented mice.
    Food and Chemical Toxicology 04/2015; 81. DOI:10.1016/j.fct.2015.04.005 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The basic biology of the cell division cycle and its control by protein kinases was originally studied through genetic and biochemical studies in yeast and other model organisms. The major regulatory mechanisms identified in this pioneer work are conserved in mammals. However, recent studies in different cell types or genetic models are now providing a new perspective on the function of these major cell cycle regulators in different tissues. Here, we review the physiological relevance of mammalian cell cycle kinases such as cyclin-dependent kinases (Cdks), Aurora and Polo-like kinases, and mitotic checkpoint regulators (Bub1, BubR1, and Mps1) as well as other less-studied enzymes such as Cdc7, Nek proteins, or Mastl and their implications in development, tissue homeostasis, and human disease. Among these functions, the control of self-renewal or asymmetric cell division in stem/progenitor cells and the ability to regenerate injured tissues is a central issue in current research. In addition, many of these proteins play previously unexpected roles in metabolism, cardiovascular function, or neuron biology. The modulation of their enzymatic activity may therefore have multiple therapeutic benefits in human disease.
    Physiological Reviews 07/2011; 91(3):973-1007. DOI:10.1152/physrev.00025.2010 · 29.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. It is more prevalent in men than women. Related to this, recent genetic studies have revealed a causal role for androgen receptor (AR) in hepatocarcinogenesis, but the underlying molecular mechanism remains unclear. Here, we used genome-wide location and functional analyses to identify a critical mediator of AR signaling - cell cycle-related kinase (CCRK) - that drives hepatocarcinogenesis via a signaling pathway dependent on β-catenin and T cell factor (TCF). Ligand-bound AR activated CCRK transcription and protein expression via direct binding to the androgen-responsive element of the CCRK promoter in human HCC cell lines. In vitro analyses showed that CCRK was critical in human cell lines for AR-induced cell cycle progression, hepatocellular proliferation, and malignant transformation. Ectopic expression of CCRK in immortalized human liver cells activated β-catenin/TCF signaling to stimulate cell cycle progression and to induce tumor formation, as shown in both xenograft and orthotopic models. Conversely, knockdown of CCRK decreased HCC cell growth, and this could be rescued by constitutively active β-catenin or TCF. In primary human HCC tissue samples, AR, CCRK, and β-catenin were concordantly overexpressed in the tumor cells. Furthermore, CCRK overexpression correlated with the tumor staging and poor overall survival of patients. Our results reveal a direct AR transcriptional target, CCRK, that promotes hepatocarcinogenesis through the upregulation of β-catenin/TCF signaling.
    The Journal of clinical investigation 08/2011; 121(8):3159-75. DOI:10.1172/JCI45967 · 13.77 Impact Factor
Show more