Article

Functional characterisation of cell cycle-related kinase (CCRK) in colorectal cancer carcinogenesis.

Integrative Chemical Biology Laboratory, Department of Chemistry, The University of Hong Kong, China.
European journal of cancer (Oxford, England: 1990) (Impact Factor: 4.12). 06/2010; 46(9):1752-61. DOI: 10.1016/j.ejca.2010.04.007
Source: PubMed

ABSTRACT Cell cycle-related kinase (CCRK) is a newly identified protein kinase homologous to Cdk7. We have previously shown that CCRK is a candidate oncogene in human glioblastoma. However, whether CCRK is a bona fide oncogene remains to be tested. The aim of this study was to investigate the role of CCRK in human colorectal cancer carcinogenesis. By Western blotting, we analysed the expression profile of CCRK protein in 10 colorectal cancer tissue samples and their adjacent normal colon tissues and in seven colorectal cancer cell lines. CCRK protein expression was also investigated by immunohistochemistry in a colorectal tissue microarray, which contained 120 cases of primary colorectal cancer and adjacent normal colorectal mucosa. The effects of CCRK knock-down on cell cycle profile and proliferation of colorectal cancer cells were examined by transfecting LoVo and DLD1 human colorectal cancer cell lines by either short-hairpin RNA (shCCRK) or small interfering RNA targeting CCRK (siCCRK). We found that CCRK protein levels were elevated by more than 1.5-fold in 70% of colorectal cancer patient samples examined and CCRK was detectable in all seven colorectal cancer cell lines tested. Colorectal tissue microarray indicated that overexpression of CCRK was detected in 62/109 (56.9%) of informative colorectal cancer cases and was significantly associated with the tumour pT and pN status (p<0.05). Suppression of CCRK by siCCRK led to G1 phase cell cycle arrest and reduced cell growth. Consistently, stable clones of LoVo and DLD1 cells expressing shCCRK exhibited decreased cell proliferation rates. Furthermore, we showed that CCRK is required for the phosphorylation of Cdk2 (on Thr-160) and Rb (on Ser-795) and the expression of cyclin E. These results suggest for the first time that CCRK is involved in colorectal cancer carcinogenesis and G1/S cell cycle transition by regulating Cdk2, cyclin E and Rb.

0 Bookmarks
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell cycle-related kinase (CCRK) is a novel protein kinase homologous to both cyclin-dependent kinase 7 (Cdk7) and Cak1p groups of CDK-activating kinase (CAK). CCRK activates Cdk2, which controls the cell-cycle progression by phosphorylating a threonine residue conserved in Cdk2. Previous studies have indicated that the CCRK protein levels were elevated by more than 1.5-fold in tumor tissue, and that the overexpression of CCRK is associated with poor prognosis of the patients. Moreover, recent studies have shown that CCRK is involved in the Wnt signaling pathway associated with the genesis and evolution of cancer. This review aims to systematically present the information currently available on CCRK obtained from in vitro and in vivo studies and highlight its significance to tumorigenesis.
    Oncology letters 10/2012; 4(4):601-606. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage.
    EMBO Reports 06/2013; · 7.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell cycle progression is controlled by sequential activation of cyclin-dependent kinases (CDKs), which are often deregulated in cancer. Consequently numerous pharmacological inhibitors of CDKs have been developed with the aim of treating cancers. The article briefly reviews CDK inhibitors and their use to treat cancers, with specific focus on the use of biomarkers and drugs combination to improve their therapeutic efficacy.
    Current opinion in cell biology 09/2013; · 14.15 Impact Factor

Full-text

View
66 Downloads
Available from
May 31, 2014