Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model.

Cardiovascular Research Centre, Department of Cardiology, Royal Adelaide Hospital and Discipline of Medicine, University of Adelaide, Adelaide, Australia.
Heart rhythm: the official journal of the Heart Rhythm Society (Impact Factor: 4.92). 05/2010; 7(9):1282-90. DOI: 10.1016/j.hrthm.2010.05.010
Source: PubMed

ABSTRACT Hypertension accounts for more atrial fibrillation (AF) than any other predisposing factor.
The purpose of this study was to characterize the time course, extent, and electrostructural correlation of atrial remodeling in chronic hypertension.
Thirty-two sheep were studied: 21 with induced "one-kidney, one-clip" hypertension and 11 controls. Sequential closed-chest electrophysiologic studies were performed in 12 conscious animals (6 hypertensive, 6 controls) to evaluate progressive remodeling over 15 weeks. Additional atrial structural/functional analyses were performed in 5 controls and at 5, 10, and 15 weeks of hypertension (five per time point) via histology/cardiac magnetic resonance imaging to correlate with open-chest electrophysiologic parameters.
The hypertensive group developed a progressive increase in mean arterial pressure (P <.001). Mean effective refractory periods were uniformly higher at all time points (P <.001). Progressive biatrial hypertrophy (P = .003), left atrial dysfunction (P <.05) and greater AF inducibility were seen early with increased inflammation from 5 weeks of hypertension. In contrast, significant conduction slowing (P <.001) with increased heterogeneity (P <.001) along with increased interstitial fibrosis resulted in longer and more fractionated AF episodes only from 10 weeks of hypertension. Significant electrostructural correlation was seen in conduction abnormalities and AF inducibility with both atrial inflammation and fibrosis.
Hypertension is associated with early and progressive changes in atrial remodeling. Atrial remodeling occurs at different time domains in chronic hypertension with significant electrostructural correlation of the remodeling cascade. Early institution of antihypertensive treatment may prevent formation of substrate capable of maintaining AF.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with relevant morbidity and mortality. Besides hypertension, valvular disease and cardiomyopathy, mainly ischemic and dilated, also other conditions like obesity, alcohol abusus, genetic factors and obstructive sleep apnea (OSA) are discussed to contribute to the progression from paroxysmal to persistent AF. The prevalence of OSA among patients with AF is 40-50%. OSA is characterized by periodic or complete cessation of effective breathing during sleep due to obstruction of the upper airways. Obstructive respiratory events result in acute intrathoracic pressure swings and profound changes in blood gases together leading to atrial stretch and acute sympatho-vagal dysbalance resulting in acute apnea related to electrophysiological and hemodynamic alterations. Additionally, repetitive obstructive events in patients with OSA may lead to sympathetic and neurohumoral activation and subsequent structural and functional changes in the atrium creating an arrhythmogenic substrate for AF in the long run. This review focuses on the acute and chronic effects of negative thoracic pressure swings, changes in blood pressure and sympatho-vagal dysbalance induced by obstructive respiratory events on atrial electrophysiology and atrial structure in patients with obstructive sleep apnea.
    Current Cardiology Reviews 07/2014; 10(4):362-8. DOI:10.2174/1573403X1004140707125137
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has now been more than a quarter of a century since modulation of the sympathetic nervous system was proposed for the treatment of cardiac arrhythmias of different origins. But it has also been some time since some of the early surgical attempts have been abandoned. With the development of ablation techniques, however, new approaches and targets have been recently introduced that have revolutionized our way of thinking about sympathetic modulation. Renal nerve ablation technology is now being successfully used for the treatment of resistant hypertension, but the indication spectrum might broaden and new therapeutic options might arise in the near future. This review focuses on the possible impact of renal sympathetic system modulation on cardiac arrhythmias, the current evidence supporting this approach, and the ongoing trials of this method in electrophysiological laboratories. We will discuss the potential roles that sympathetic modulation may play in the future. This article is protected by copyright. All rights reserved.
    Journal of Cardiovascular Electrophysiology 09/2014; 26(2). DOI:10.1111/jce.12553 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension is one of the most important risk factors for atrial fibrillation (AF). Recent studies suggest right atrial remodeling in hypertensive patients may be associated with increased inducibility of AF. This study sought to characterize the electroanatomic features of left and right atria and pulmonary veins (PVs) in hypertensive patients.
    Journal of the American Heart Association 09/2014; 3(5). DOI:10.1161/JAHA.114.001033 · 2.88 Impact Factor