Impaired water reabsorption in mice deficient in the type VI adenylyl cyclase (AC6)

Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
FEBS letters (Impact Factor: 3.17). 07/2010; 584(13):2883-90. DOI: 10.1016/j.febslet.2010.05.004
Source: PubMed


Adenylyl cyclase (AC) type VI (AC6) is a calcium-inhibitable enzyme which produces cAMP upon stimulation. Herein, we characterized the specific role of AC6 in the kidneys using two AC6-knockout mouse lines. Immunohistochemical staining revealed that AC6 exists in the tubular parts of the nephron and collecting duct. Activities of AC evoked by forskolin or a selective agonist of the V2 vasopressin receptor were lower in the kidneys of AC6-null mice compared to those of wildtype mice. Results of a metabolic cage assay and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) showed for the first time that AC6 plays a critical role in regulating water homeostasis.

Download full-text


Available from: Yijuang Chern, Apr 28, 2014
37 Reads
  • Source
    • "In addition, adult AC6-null mice were more sensitive to experimental handling than WT mice. Although AC6-null mice appeared anatomically normal under basal conditions (Chien et al., 2010), more than 50% of AC6-null mice developed an enlarged colon (Fig. S3) and constipation after being tested using a panel of noninvasive assays such as electrocardiography and echocardiography. No effect of these noninvasive tests on WT mice was observed (Fig. S3). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Visceral functions are regulated by a basal sympathetic nerve discharge (SND), also known as 'sympathetic tone'. We demonstrate herein that AC6 existed in tyrosine hydroxylase-positive rostral ventrolateral medulla neurons in the brainstem. Adenylyl cyclase (AC) assays showed lower basal and pituitary adenylate cyclase-activating peptide-evoked AC activities in the brainstem of AC6-null mice, indicating that AC6 is a prominent AC isozyme in the brainstem. Furthermore, two independent lines of AC6-null mice exhibited a much higher SND, recorded from splanchnic sympathetic nerves of neonatal brainstem-spinal cord preparations, than wildtype mice. An assay of urine noradrenaline confirmed this observation. Collectively, AC6 plays a critical role in the regulation of sympathetic tone.
    Experimental Neurology 05/2013; 248. DOI:10.1016/j.expneurol.2013.05.015 · 4.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sympathetic nervous system stimulates renin release from juxtaglomerular cells via the β-adrenoreceptor-cAMP pathway. Recent in vitro studies have suggested that the calcium-inhibited adenylyl cyclases (ACs) 5 and 6 possess key roles in the control of renin exocytosis. To investigate the relative contribution of AC5 and AC6 to the regulation of renin release in vivo we performed experiments using AC5 and AC6 knockout mice. Male AC5(-/-) mice exhibited normal plasma renin concentrations, renal renin synthesis (mRNA and renin content), urinary volume, and systolic blood pressure. In male AC6(-/-) mice, plasma renin concentration (AC6(-/-): 732 ± 119; AC6 (+/+): 436 ± 78 ng of angiotensin I per hour*mL(-1); P<0.05), and renin synthesis were stimulated associated with an increased excretion of dilute urine (1.55-fold; P<0.05) and reduced blood pressure (-10.6 mm Hg; P<0.001). Stimulation of plasma renin concentration by a single injection of the β-adrenoreceptor agonist isoproterenol (10 mg/kg IP) was significantly attenuated in AC5(-/-) (male: -20%; female: -33%) compared with wild-type mice in vivo. The mitigation of the plasma renin concentration response to isoproterenol was even more pronounced in AC6(-/-) (male: -63%; female: -50% versus AC6(+/+)). Similarly, the effects of isoproterenol, prostaglandin E2, and pituitary adenylyl cyclase-activating polypeptide on renin release from isolated perfused kidneys were attenuated to a higher extent in AC6(-/-) (-51% to -98% versus AC6(+/+)) than in AC5(-/-) (-31% to 46% versus AC5(+/+)). In conclusion, both AC5 and AC6 are involved in the stimulation of renin secretion in vivo, and AC6 is the dominant isoforms in this process.
    Hypertension 03/2011; 57(3):460-8. DOI:10.1161/HYPERTENSIONAHA.110.167130 · 6.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic kidney disease (PKD) is a genetic disorder that is characterized by cyst formation in kidney tubules. PKD arises from abnormalities of the primary cilium, a sensory organelle located on the cell surface. Here, we show that the primary cilium of renal epithelial cells contains a protein complex comprising adenylyl cyclase 5/6 (AC5/6), A-kinase anchoring protein 150 (AKAP150), and protein kinase A. Loss of primary cilia caused by deletion of Kif3a results in activation of AC5 and increased cAMP levels. Polycystin-2 (PC2), a ciliary calcium channel that is mutated in human PKD, interacts with AC5/6 through its C terminus. Deletion of PC2 increases cAMP levels, which can be corrected by reexpression of wild-type PC2 but not by a mutant lacking calcium channel activity. Phosphodiesterase 4C (PDE4C), which catabolizes cAMP, is also located in renal primary cilia and interacts with the AKAP150 complex. Expression of PDE4C is regulated by the transcription factor hepatocyte nuclear factor-1β (HNF-1β), mutations of which produce kidney cysts. PDE4C is down-regulated and cAMP levels are increased in HNF-1β mutant kidney cells and mice. Collectively, these findings identify PC2 and PDE4C as unique components of an AKAP complex in primary cilia and reveal a common mechanism for dysregulation of cAMP signaling in cystic kidney diseases arising from different gene mutations.
    Proceedings of the National Academy of Sciences 06/2011; 108(26):10679-84. DOI:10.1073/pnas.1016214108 · 9.67 Impact Factor
Show more