Article

Natural Killer Cells as Biomarkers of Hyperbaric Stress During a Dry Heliox Saturation Dive

Aarhus University Hospital, Aarhus, Central Jutland, Denmark
Aviation Space and Environmental Medicine (Impact Factor: 0.78). 05/2010; 81(5):467-74. DOI: 10.3357/ASEM.2528.2010
Source: PubMed

ABSTRACT Diving, hyperbaric oxygen, and decompression have been described as inducers of alterations in various components of the human immune system, such as the distribution of circulating lymphocytes. Hypothetically, the monitoring of specific lymphocyte subsets during hyperbaric exposure, including T- and NK-cell subsets, can serve as biomarkers of hyperbaric stress.
Eight experienced saturation divers and eight reference subjects, naive to deep saturation diving, were examined. Peripheral blood mononuclear cells were isolated before and at different points during a 19.3-d dry heliox saturation dive to 2.64 MPa (254 msw). The NK cell cytotoxicity was estimated in a 4-h 51Cr-release assay using the NK cell sensitive tumor cell-line K562 as target cells. The major lymphocyte subpopulations, with special emphasis on the NK cell subsets, were phenotypically delineated by the use of 4-color flow cytometry.
Although NK cell cytotoxicity increased significantly in the divers during the compression phase and the reference subjects who remained in normoxic conditions outside the chamber, the NK cell cytotoxicity was significantly higher in the divers.
This finding, together with augmentation in the absolute number of circulating NK cells in the divers due to a possible activation of specific parts of the innate cellular immune system during hyperbaric exposure, suggests the monitoring of specific immune functions can be useful as biomarkers of hyperbaric-induced inflammatory stress.

0 Bookmarks
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During scuba diving, the circulatory system is stressed by an elevated partial pressure of oxygen while the diver is submerged and by decompression-induced gas bubbles on ascent to the surface. This diving-induced stress may trigger decompression illness, but the majority of dives are asymptomatic. In this study we have mapped divers' blood transcriptomes with the aim of identifying genes, biological pathways and cell types perturbed by the physiological stress in asymptomatic scuba diving. Ten experienced divers abstained from diving for more than two weeks before performing a three-day series of daily dives to 18 meters depth for 47 minutes while breathing compressed air. Blood for microarray analysis was collected before and immediately after the first and last dives, and ten matched non-divers provided controls for pre-dive stationary transcriptomes. MetaCore GeneGo analysis of the pre-dive samples identified stationary upregulation of genes associated with apoptosis, inflammation and innate immune responses in the divers, most significantly involving genes in the TNFR1 pathway of caspase-dependent apoptosis, HSP60/HSP70 signaling via TLR4 and NF-κB-mediated transcription. Diving caused pronounced shifts in transcription patterns characteristic of specific leukocytes, with downregulation of genes expressed by CD8+ T lymphocytes and NK cells and upregulation of genes expressed by neutrophils, monocytes and macrophages. Antioxidant genes were upregulated. Similar transient responses were observed after the first and last dive. The results indicate that sub-lethal oxidative stress elicits the myeloid innate immune system in scuba diving, and that extensive diving may cause persistent change in pathways controlling apoptosis, inflammation and innate immune responses.
    Physiological Genomics 08/2013; 45(20). DOI:10.1152/physiolgenomics.00164.2012 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In saturation diving, divers stay under pressure until most of their tissues are saturated with breathing gas. Divers spend a long time in isolation exposed to increased partial pressure of oxygen, potentially toxic gases, bacteria, and bubble formation during decompression combined with shift work and long periods of relative inactivity. Hyperoxia may lead to the production of reactive oxygen species (ROS) that interact with cell structures, causing damage to proteins, lipids, and nucleic acid. Vascular gas-bubble formation and hyperoxia may lead to dysfunction of the endothelium. The antioxidant status of the diver is an important mechanism in the protection against injury and is influenced both by diet and genetic factors. The factors mentioned above may lead to production of heat shock proteins (HSP) that also may have a negative effect on endothelial function. On the other hand, there is a great deal of evidence that HSPs may also have a "conditioning" effect, thus protecting against injury. As people age, their ability to produce antioxidants decreases. We do not currently know the capacity for antioxidant defense, but it is reasonable to assume that it has a limit. Many studies have linked ROS to disease states such as cancer, insulin resistance, diabetes mellitus, cardiovascular diseases, and atherosclerosis as well as to old age. However, ROS are also involved in a number of protective mechanisms, for instance immune defense, antibacterial action, vascular tone, and signal transduction. Low-grade oxidative stress can increase antioxidant production. While under pressure, divers change depth frequently. After such changes and at the end of the dive, divers must follow procedures to decompress safely. Decompression sickness (DCS) used to be one of the major causes of injury in saturation diving. Improved decompression procedures have significantly reduced the number of reported incidents; however, data indicate considerable underreporting of injuries. Furthermore, divers who are required to return to the surface quickly are under higher risk of serious injury as no adequate decompression procedures for such situations are available. Decompression also leads to the production of endothelial microparticles that may reduce endothelial function. As good endothelial function is a documented indicator of health that can be influenced by regular exercise, regular physical exercise is recommended for saturation divers. Nowadays, saturation diving is a reasonably safe and well controlled method for working under water. Until now, no long-term impact on health due to diving has been documented. However, we still have limited knowledge about the pathophysiologic mechanisms involved. In particular we know little about the effect of long exposure to hyperoxia and microparticles on the endothelium. © 2014 American Physiological Society. Compr Physiol 4:1229-1272, 2014.
    07/2014; 4(3):1229-72. DOI:10.1002/cphy.c130048
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During scuba diving, the circulatory system is stressed by an elevated partial pressure of oxygen while the diver is submerged and by decompression-induced gas bubbles on ascent to the surface. This diving-induced stress may trigger decompression illness, but the majority of dives are asymptomatic. In this study we have mapped divers' blood transcriptomes with the aim of identifying genes, biological pathways and cell types perturbed by the physiological stress in asymptomatic scuba diving. Ten experienced divers abstained from diving for more than two weeks before performing a three-day series of daily dives to 18 meters depth for 47 minutes while breathing compressed air. Blood for microarray analysis was collected before and immediately after the first and last dives, and ten matched non-divers provided controls for pre-dive stationary transcriptomes. MetaCore GeneGo analysis of the pre-dive samples identified stationary upregulation of genes associated with apoptosis, inflammation and innate immune responses in the divers, most significantly involving genes in the TNFR1 pathway of caspase-dependent apoptosis, HSP60/HSP70 signaling via TLR4 and NF-κB-mediated transcription. Diving caused pronounced shifts in transcription patterns characteristic of specific leukocytes, with downregulation of genes expressed by CD8+ T lymphocytes and NK cells and upregulation of genes expressed by neutrophils, monocytes and macrophages. Antioxidant genes were upregulated. Similar transient responses were observed after the first and last dive. The results indicate that sub-lethal oxidative stress elicits the myeloid innate immune system in scuba diving, and that extensive diving may cause persistent change in pathways controlling apoptosis, inflammation and innate immune responses.
    Physiological Genomics 08/2013; · 2.81 Impact Factor