Article

A formal test of the theory of universal common ancestry.

Department of Biochemistry, Brandeis University, Waltham, Massachusetts 01778, USA.
Nature (Impact Factor: 38.6). 05/2010; 465(7295):219-22. DOI: 10.1038/nature09014
Source: PubMed

ABSTRACT Universal common ancestry (UCA) is a central pillar of modern evolutionary theory. As first suggested by Darwin, the theory of UCA posits that all extant terrestrial organisms share a common genetic heritage, each being the genealogical descendant of a single species from the distant past. The classic evidence for UCA, although massive, is largely restricted to 'local' common ancestry-for example, of specific phyla rather than the entirety of life-and has yet to fully integrate the recent advances from modern phylogenetics and probability theory. Although UCA is widely assumed, it has rarely been subjected to formal quantitative testing, and this has led to critical commentary emphasizing the intrinsic technical difficulties in empirically evaluating a theory of such broad scope. Furthermore, several researchers have proposed that early life was characterized by rampant horizontal gene transfer, leading some to question the monophyly of life. Here I provide the first, to my knowledge, formal, fundamental test of UCA, without assuming that sequence similarity implies genetic kinship. I test UCA by applying model selection theory to molecular phylogenies, focusing on a set of ubiquitously conserved proteins that are proposed to be orthologous. Among a wide range of biological models involving the independent ancestry of major taxonomic groups, the model selection tests are found to overwhelmingly support UCA irrespective of the presence of horizontal gene transfer and symbiotic fusion events. These results provide powerful statistical evidence corroborating the monophyly of all known life.

0 Bookmarks
 · 
386 Views
  • Systematic Biology 06/2014; · 12.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toward reconstitution of living cells by artificial cells technology, it is critical process to understand the differences between mixtures of biomolecules and living cells. For the aim, we have developed procedures for preparation of an additive-free cell extract (AFCE) and for concentrating biomacromolecules in artificial cells. In this review, we introduce our recent progress to reconstitute intracellular environments in vitro and in artificial cells.
    BIOPHYSICS 07/2014; 10:43-48.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidoreductases mediate electron transfer (i.e., redox) reactions across the tree of life and ultimately facilitate the biologically driven fluxes of hydrogen, carbon, nitrogen, oxygen, and sulfur on Earth. The core enzymes responsible for these reactions are ancient, often small in size, and highly diverse in amino acid sequence, and many require specific transition metals in their active sites. Here we reconstruct the evolution of metal-binding domains in extant oxidoreductases using a flexible network approach and permissive profile alignments based on available microbial genome data. Our results suggest there were at least 10 independent origins of redox domain families. However, we also identified multiple ancient connections between Fe2S2- (adrenodoxin-like) and heme- (cytochrome c) binding domains. Our results suggest that these two iron-containing redox families had a single common ancestor that underwent duplication and divergence. The iron-containing protein family constitutes ∼50% of all metal-containing oxidoreductases and potentially catalyzed redox reactions in the Archean oceans. Heme-binding domains seem to be derived via modular evolutionary processes that ultimately form the backbone of redox reactions in both anaerobic and aerobic respiration and photosynthesis. The empirically discovered network allows us to peer into the ancient history of microbial metabolism on our planet.
    Proceedings of the National Academy of Sciences 04/2014; · 9.81 Impact Factor

Full-text

Download
17 Downloads
Available from