Mitochondrial iron metabolism and its role in neurodegeneration.

Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA.
Journal of Alzheimer's disease: JAD (Impact Factor: 3.61). 01/2010; 20 Suppl 2:S551-68. DOI: 10.3233/JAD-2010-100354
Source: PubMed

ABSTRACT In addition to their well-established role in providing the cell with ATP, mitochondria are the source of iron-sulfur clusters (ISCs) and heme - prosthetic groups that are utilized by proteins throughout the cell in various critical processes. The post-transcriptional system that mammalian cells use to regulate intracellular iron homeostasis depends, in part, upon the synthesis of ISCs in mitochondria. Thus, proper mitochondrial function is crucial to cellular iron homeostasis. Many neurodegenerative diseases are marked by mitochondrial impairment, brain iron accumulation, and oxidative stress - pathologies that are inter-related. This review discusses the physiological role that mitochondria play in cellular iron homeostasis and, in so doing, attempts to clarify how mitochondrial dysfunction may initiate and/or contribute to iron dysregulation in the context of neurodegenerative disease. We review what is currently known about the entry of iron into mitochondria, the ways in which iron is utilized therein, and how mitochondria are integrated into the system of iron homeostasis in mammalian cells. Lastly, we turn to recent advances in our understanding of iron dysregulation in two neurodegenerative diseases (Alzheimer's disease and Parkinson's disease), and discuss the use of iron chelation as a potential therapeutic approach to neurodegenerative disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence supports a role for mitochondrial iron metabolism in the pathophysiology of neurodegenerative disorders such as Friedreich ataxia (FRDA) and Parkinson disease (PD) as well as in the motor and cognitive decline associated with the aging process. Iron-sulfur enzyme deficits and regional iron accumulation have been observed in each of these conditions. In spite of significant etiological, clinical and pathological differences that exist between FRDA and PD, it is possible that defects in mitochondrial iron-sulfur clusters (ISCs) biogenesis represent a common underlying mechanism leading to abnormal intracellular iron distribution with mitochondrial iron accumulation, oxidative phosphorylation deficits and oxidative stress in susceptible cells and specific regions of the nervous system. Moreover, a similar mechanism may contribute to the age-dependent iron accumulation that occurs in certain brain regions such as the globus pallidus and the substantia nigra. Targeting chelatable iron and reactive oxygen species appear as possible therapeutic options for FRDA and PD, and possibly other age-related neurodegenerative conditions. However, new technology to interrogate ISC synthesis in humans is needed to (i) assess how defects in this pathway contribute to the natural history of neurodegenerative disorders and (ii) develop treatments to correct those defects early in the disease process, before they cause irreversible neuronal cell damage.
    Frontiers in Pharmacology 03/2014; 5:29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of the iron-containing prosthetic groups-heme and iron-sulfur clusters-occurs in mitochondria. The mitochondrion is also an important producer of reactive oxygen species (ROS), which are derived from electrons leaking from the electron transport chain. The coexistence of both ROS and iron in the secluded space of the mitochondrion makes this organelle particularly prone to oxidative damage. Here, we review the elements that configure mitochondrial iron homeostasis and discuss the principles of iron-mediated ROS generation in mitochondria. We also review the evidence for mitochondrial dysfunction and iron accumulation in Alzheimer's disease, Huntington Disease, Friedreich's ataxia, and in particular Parkinson's disease. We postulate that a positive feedback loop of mitochondrial dysfunction, iron accumulation, and ROS production accounts for the process of cell death in various neurodegenerative diseases in which these features are present. Copyright © 2015. Published by Elsevier B.V.
    Mitochondrion 02/2015; · 3.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Superparamagnetic iron oxide nanoparticles (SPIONs) are used in many biological applications, which necessitate intracellular targeting. Here, we investigate intracellular localization and gene expression in HeLa cells after treatment with functionalized SPIONs. Functional groups investigated included positive amino propyl silane (APS), polyethylene glycol and targeting peptides: nuclear targeting peptide (NTP) and/or cancer cell uptake promoting peptide (cRGD). Results revealed that the intracellular localization of SPIONs was strongly dependent on the surface chemistry. Nuclear targeted SPIONs functionalized with only NTP or both NTP and cRGD were mostly localized in perinuclear endosomes with a small fraction entering the nucleus. The biocompatibility of cells after treatment was also dependent on surface chemistry, where SPIONs functionalized with both NTP and cRGD exhibited a more significant reduction of cell proliferation compared to NTP or cRGD individually. Interestingly, gene expression after treatment with SPIONs was similar, regardless of the surface functionalization or intracellular localization. The results of this study showed that cellular uptake and intracellular localization predominantly depended on the surface chemistry, while gene expression exhibited a more generic response to SPION treatment.
    Nano brief reports and reviews 02/2014; 09(01). · 1.26 Impact Factor


Available from