Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease--therapeutic aspects.

Department of Pharmacology, Biocenter, University of Frankfurt, Max-von Laue-Strasse 9, 60438, Frankfurt, Germany.
Molecular Neurobiology (Impact Factor: 5.29). 06/2010; 41(2-3):159-71. DOI: 10.1007/s12035-010-8141-5
Source: PubMed

ABSTRACT As a fully differentiated organ, our brain is very sensitive to cumulative oxidative damage of proteins, lipids, and DNA occurring during normal aging because of its high energy metabolism and the relative low activity of antioxidative defense mechanisms. As a major consequence, perturbations of energy metabolism including mitochondrial dysfunction, alterations of signaling mechanisms and of gene expression culminate in functional deficits. With the increasing average life span of humans, age-related cognitive disorders such as Alzheimer's disease (AD) are a major health concern in our society. Age-related mitochondrial dysfunction underlies most neurodegenerative diseases, where it is potentiated by disease-specific factors. AD is characterized by two major histopathological hallmarks, initially intracellular and with the progression of the disease extracellular accumulation of oligomeric and fibrillar beta-amyloid peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. In this review, we focus on findings in AD animal and cell models indicating that these histopathological alterations induce functional deficits of the respiratory chain complexes and therefore consecutively result in mitochondrial dysfunction and oxidative stress. These parameters lead synergistically with the alterations of the brain aging process to typical signs of neurodegeneration in the later state of the disease, including synaptic dysfunction, loss of synapses and neurites, and finally neuronal loss. We suggest that mitochondrial protection and subsequent reduction of oxidative stress are important targets for prevention and long-term treatment of early stages of AD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Perindopril, an angiotensin converting enzyme inhibitor, has been reported to improve learning and memory in a mouse or rat model of Alzheimer's disease (AD) induced by injection of beta-amyloid protein. However, the exact mechanism of perindopril on the cognitive deficits is not fully understood. Our previous data have indicated that perindopril improves learning and memory in a mouse model of AD induced by D-galactose (D-gal) and aluminium trichloride (AlCl3) via inhibition of acetylcholinesterase activity and oxidative stress. Whether perindopril also inhibit apoptosis to prevent cognitive decline remains unknown in mice. Therefore, the present study explored the protective effects of perindopril in the hippocampus of mice further. Perindopril (0.5 mg/kg/day) was administered intragastrically for 60 days after the mice were given a D-gal (150 mg/kg/day) and AlCl3 (10 mg/kg/day) intraperitoneally for 90 days. Then the expression of Bcl-2, Bax, Fas, FasL, caspase-3, caspase-8 and caspase-9 were analyzed by RT-PCR and western blotting in the hippocampus. Perindopril significantly decreased caspase-3 and caspase-9 activities, and elevated Bcl-2/Bax ratio in the hippocampus. However, the expression of Fas, FasL and caspase-8 did not change in the hippocampus whether treatment with D-gal and AlCl3 or perindopril. Taken together, the above findings indicated that perindopril inhibited apoptosis in the hippocampus may be another mechanism by which perindopril improves learning and memory functions in D-gal and AlCl3 treated mice.
    Brain Research Bulletin 10/2014; · 2.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain has high energy requirements to maintain neuronal activity. Consequently impaired mitochondrial function will lead to disease. Normal aging is associated with several alterations in neurosteroid production and secretion. Decreases in neurosteroid levels might contribute to brain aging and loss of important nervous functions, such as memory. Up to now, extensive studies only focused on estradiol as a promising neurosteroid compound that is able to ameliorate cellular bioenergetics, while the effects of other steroids on brain mitochondria are poorly understood or not investigated at all. Thus, we aimed to characterize the bioenergetic modulating profile of a panel of seven structurally diverse neurosteroids (progesterone, estradiol, estrone, testosterone, 3α-androstanediol, DHEA and allopregnanolone), known to be involved in brain function regulation. Of note, most of the steroids tested were able to improve bioenergetic activity in neuronal cells by increasing ATP levels, mitochondrial membrane potential and basal mitochondrial respiration. In parallel, they modulated redox homeostasis by increasing antioxidant activity, probably as a compensatory mechanism to a slight enhancement of ROS which might result from the rise in oxygen consumption. Thereby, neurosteroids appeared to act via their corresponding receptors and exhibited specific bioenergetic profiles. Taken together, our results indicate that the ability to boost mitochondria is not unique to estradiol, but seems to be a rather common mechanism of different steroids in the brain. Thus, neurosteroids may act upon neuronal bioenergetics in a delicate balance and an age-related steroid disturbance might be involved in mitochondrial dysfunction underlying neurodegenerative disorders.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 09/2014; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most common cause of dementia worldwide. As advancing age is the greatest risk factor for developing AD, the number of those afflicted is expected to increase markedly with the aging of the world's population. The inability to definitively diagnose AD until autopsy remains an impediment to establishing effective targeted treatments. Neuroimaging has enabled in vivo visualization of pathological changes in the brain associated with the disease, providing a greater understanding of its pathophysiological development and progression. However, neuroimaging biomarkers do not yet offer clear advantages over current clinical diagnostic criteria for them to be accepted into routine clinical use. Nonetheless, current insights from neuroimaging combined with the elucidation of biochemical and molecular processes in AD are informing the ongoing development of new imaging techniques and their application. Much of this research has been greatly assisted by the availability of transgenic mouse models of AD. In this review we summarize the main efforts of neuroimaging in AD in humans and in mouse models, with a specific focus on β-amyloid, and discuss the potential of new applications and novel approaches.
    Frontiers in Neuroscience 10/2014; 8:327.