Article

Wip1 Directly Dephosphorylates (Y)-H2AX and Attenuates the DNA Damage Response

Department of Biochemistry, Georgetown University, Washington, District of Columbia 20057-1468, USA.
Cancer Research (Impact Factor: 9.28). 05/2010; 70(10):4112-22. DOI: 10.1158/0008-5472.CAN-09-4244
Source: PubMed

ABSTRACT The integrity of DNA is constantly challenged throughout the life of a cell by both endogenous and exogenous stresses. A well-organized rapid damage response and proficient DNA repair, therefore, become critically important for maintaining genomic stability and cell survival. When DNA is damaged, the DNA damage response (DDR) can be initiated by alterations in chromosomal structure and histone modifications, such as the phosphorylation of the histone H2AX (the phosphorylated form is referred to as gamma-H2AX). gamma-H2AX plays a crucial role in recruiting DDR factors to damage sites for accurate DNA repair. On repair completion, gamma-H2AX must then be reverted to H2AX by dephosphorylation for attenuation of the DDR. Here, we report that the wild-type p53-induced phosphatase 1 (Wip1) phosphatase, which is often overexpressed in a variety of tumors, effectively dephosphorylates gamma-H2AX in vitro and in vivo. Ectopic expression of Wip1 significantly reduces the level of gamma-H2AX after ionizing as well as UV radiation. Forced premature dephosphorylation of gamma-H2AX by Wip1 disrupts recruitment of important DNA repair factors to damaged sites and delays DNA damage repair. Additionally, deletion of Wip1 enhances gamma-H2AX levels in cells undergoing constitutive oncogenic stress. Taken together, our studies show that Wip1 is an important mammalian phosphatase for gamma-H2AX and shows an additional mechanism for Wip1 in the tumor surveillance network.

0 Followers
 · 
144 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HDAC inhibitors have radiosensitizing effects in established cancer cell lines. This study was conducted to compare the efficacy of SAHA, LBH589, Valproic Acid (VPA), MS275 and Scriptaid in the patient-derived glioblastoma model. In more detail, SAHA and LBH589 were evaluated to determine predictors of response. Acetylated-histone-H3, γH2AX/53BP1, (p)Chek2/ATM, Bcl-2/Bcl-XL, p21(CIP1/WAF1) and caspase-3/7 were studied in relation to response. SAHA sensitized 50% of cultures, LBH589 45%, VPA and Scriptaid 40% and MS275 60%. Differences after treatment with SAHA/RTx or LBH589/RTx in a sensitive and resistant culture were increased acetylated-H3, caspase-3/7 and prolonged DNA damage repair γH2AX /53BP1 foci. pChek2 was found to be associated with both SAHA/RTx and LBH589/RTx response with a positive predictive value (PPV) of 90%. Bcl-XL had a PPV of 100% for LBH589/RTx response. Incubation with HDACi 24 and 48hours pre-RTx resulted in the best efficacy of combination treatment. In conclusion a subset of patient-derived glioblastoma cultures were sensitive to HDACi/RTx. For SAHA and LBH589 responses were strongly associated with pChek2 and Bcl-XL, which warrant further clinical exploration. Additional information on responsiveness was obtained by DNA damage response markers and apoptosis related proteins.
    Cancer Letters 10/2014; DOI:10.1016/j.canlet.2014.09.049 · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During interphase, the spindle assembly factor TPX2 is compartmentalized in the nucleus where its roles remain largely uncharacterized. Recently, we found that TPX2 regulates the levels of serine 139-phosphoryated H2AX (γ-H2AX) at chromosomal breaks induced by ionizing radiation. Here, we report that TPX2 readily associates with the chromatin in the absence of ionizing radiation. Overexpression of TPX2 alters the DAPI staining pattern of interphase cells and depletion of TPX2 constitutively decreases the levels of histone H4 acetylated at lysine16 (H4K16ac) during G1-phase. Upon ionizing irradiation, this constitutive TPX2 depletion-dependent decrease in H4K16ac levels correlates with increased levels of γ-H2AX. The inversely correlated levels of H4K16ac and γ-H2AX can also be modified by altering the levels of SIRT1, herein identified as a novel protein complex partner of TPX2. Furthermore, we find that TPX2 depletion also interferes with formation of 53BP1 ionizing radiation-induced foci, known to depend on γ-H2AX and the acetylation status of H4K16. In brief, our study is the first indication of a constitutive control of TPX2 on H4K16ac levels, with potential implications for DNA damage response.
    PLoS ONE 11/2014; 9(11):e110994. DOI:10.1371/journal.pone.0110994 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX-family transcriptional scaffolding proteins, which mediate assembly of nuclear matrix–associated gene regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage: RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine 139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3, lysine 9 acetylation levels (H3K9-Ac), which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B/γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells may clarify its expression in chemotherapy-resistant and/or metastatic tumors.
    Journal of Cell Science 02/2015; DOI:10.1242/jcs.160051 · 5.33 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 29, 2014