Article

Estrogen Receptor beta Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein

Department of Biochemistry and Molecular Biology, Medical School Duluth, University of Minnesota, Duluth, Minnesota 55812, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 05/2010; 334(2):467-76. DOI: 10.1124/jpet.110.168930
Source: PubMed

ABSTRACT Breast cancer resistance protein (BCRP) is an ATP-driven efflux pump at the blood-brain barrier that limits central nervous system pharmacotherapy. Our previous studies showed rapid loss of BCRP transport activity in rat brain capillaries exposed to low concentrations of 17-beta-estradiol (E2); this occurred without acute change in BCRP protein expression. Here, we describe a pathway through which sustained, extended exposure to E2 signals down-regulation of BCRP at the blood-brain barrier. Six-hour exposure of isolated rat and mouse brain capillaries to E2 reduced BCRP transport activity and BCRP monomer and dimer expression. Experiments with brain capillaries from estrogen receptor (ER)alpha and ERbeta knockout mice and with ER agonists and antagonists showed that E2 signaled through ERbeta to down-regulate BCRP expression. In rat brain capillaries, E2 increased unphosphorylated, active phosphatase and tensin homolog (PTEN); decreased phosphorylated, active Akt; and increased phosphorylated, active glycogen synthase kinase (GSK)3. Consistent with this, inhibition of phosphoinositide 3-kinase (PI3K) or Akt decreased BCRP activity and protein expression, and inhibition of PTEN or GSK3 reversed the E2 effect on BCRP. Lactacystin, a proteasome inhibitor, abolished E2-mediated BCRP down-regulation, suggesting internalization followed by transporter degradation. Dosing mice with E2 reduced BCRP activity in brain capillaries within 1 h; this reduction persisted for 24 h. BCRP protein expression in brain capillaries was unchanged 1 h after E2 dosing but was substantially reduced 6 and 24 h after dosing. Thus, E2 signals through ERbeta, PTEN/PI3K/Akt/GSK3 to stimulate proteasomal degradation of BCRP. These in vitro and in vivo findings imply that E2-mediated down-regulation of blood-brain barrier BCRP has the potential to increase brain uptake of chemotherapeutics that are BCRP substrates.

Full-text

Available from: Björn Bauer, Mar 12, 2014
0 Followers
 · 
150 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Steroids have a wide spectrum of impact, serving as fundamental regulators of nearly every physiological process within the human body. Therapeutic applications of steroids are equally broad, with a diverse range of medications and targets. Within the central nervous system (CNS), steroids influence development, memory, behavior, and disease outcomes. Moreover, steroids are well recognized as to their impact on the vascular endothelium. The blood-brain barrier (BBB) at the level of the brain microvascular endothelium serves as the principle interface between the peripheral circulation and the brain. Steroids have been identified to impact several critical properties of the BBB, including cellular efflux mechanisms, nutrient uptake, and tight junction integrity. Such actions not only influence brain homeostasis but also the delivery of CNS-targeted therapeutics. A greater understanding of the respective steroid-BBB interactions may shed further light on the differential treatment outcomes observed across CNS pathologies. In this chapter, we examine the current therapeutic implications of steroids respective to BBB structure and function, with emphasis on glucocorticoids and estrogens.
    Advances in pharmacology (San Diego, Calif.) 01/2014; 71C:361-390. DOI:10.1016/bs.apha.2014.06.018
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATP binding cassette (ABC) transporters at the blood-brain barrier function as ATP-driven xenobiotic efflux pumps and limit delivery of small molecule drugs to the brain. Here I review recent progress in understanding the regulation of the expression and transport activity of these transporters and comment on how this new information might aid in improving drug delivery to the brain.
    Clinical Pharmacology &#38 Therapeutics 11/2014; 97(4). DOI:10.1002/cpt.64 · 7.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain capillary endothelial cells express multiple ATP-binding cassette transport proteins on the luminal, blood-facing, plasma membrane. There these transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites, providing an important element of the barrier. When the transporters limit neurotoxicant entry into the central nervous system (CNS), they are neuroprotective; when they limit therapeutic drug entry, they are obstacles to drug delivery to treat CNS diseases. Certainly, changes in the transporter expression and transport activity can have a profound effect on CNS pharmacotherapy, with increased transport activity reducing drug access to the brain and vice versa. Here, I review the signals that alter transporter expression and transport function with an emphasis on P-glycoprotein, MRP2, and breast cancer resistance protein (ABCG2) (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced. For many of these stimuli, the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), appears to be involved. However, NF-κB activation and nuclear translocation is often initiated by upstream signaling. In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways. Targeting such signals provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are transporter substrates. The extent to which such signaling-based strategies can be utilized in the clinic remains to be seen.
    Advances in pharmacology (San Diego, Calif.) 01/2014; 71C:1-24. DOI:10.1016/bs.apha.2014.06.008