Estrogen Receptor Signaling through Phosphatase and Tensin Homolog/Phosphoinositide 3-Kinase/Akt/Glycogen Synthase Kinase 3 Down-Regulates Blood-Brain Barrier Breast Cancer Resistance Protein

Department of Biochemistry and Molecular Biology, Medical School Duluth, University of Minnesota, Duluth, Minnesota 55812, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.97). 05/2010; 334(2):467-76. DOI: 10.1124/jpet.110.168930
Source: PubMed


Breast cancer resistance protein (BCRP) is an ATP-driven efflux pump at the blood-brain barrier that limits central nervous system pharmacotherapy. Our previous studies showed rapid loss of BCRP transport activity in rat brain capillaries exposed to low concentrations of 17-beta-estradiol (E2); this occurred without acute change in BCRP protein expression. Here, we describe a pathway through which sustained, extended exposure to E2 signals down-regulation of BCRP at the blood-brain barrier. Six-hour exposure of isolated rat and mouse brain capillaries to E2 reduced BCRP transport activity and BCRP monomer and dimer expression. Experiments with brain capillaries from estrogen receptor (ER)alpha and ERbeta knockout mice and with ER agonists and antagonists showed that E2 signaled through ERbeta to down-regulate BCRP expression. In rat brain capillaries, E2 increased unphosphorylated, active phosphatase and tensin homolog (PTEN); decreased phosphorylated, active Akt; and increased phosphorylated, active glycogen synthase kinase (GSK)3. Consistent with this, inhibition of phosphoinositide 3-kinase (PI3K) or Akt decreased BCRP activity and protein expression, and inhibition of PTEN or GSK3 reversed the E2 effect on BCRP. Lactacystin, a proteasome inhibitor, abolished E2-mediated BCRP down-regulation, suggesting internalization followed by transporter degradation. Dosing mice with E2 reduced BCRP activity in brain capillaries within 1 h; this reduction persisted for 24 h. BCRP protein expression in brain capillaries was unchanged 1 h after E2 dosing but was substantially reduced 6 and 24 h after dosing. Thus, E2 signals through ERbeta, PTEN/PI3K/Akt/GSK3 to stimulate proteasomal degradation of BCRP. These in vitro and in vivo findings imply that E2-mediated down-regulation of blood-brain barrier BCRP has the potential to increase brain uptake of chemotherapeutics that are BCRP substrates.

Download full-text


Available from: Björn Bauer, Mar 12, 2014
  • Source
    • "In agreement , Hartz et al . ( 2010 ) described that estradiol signals through ERβ and ERα to initiate Bcrp internaliza - tion and acts via ERβ to stimulate proteosomal degradation of Bcrp in murine brain capillaries . In contrast , Ee et al . ( 2004 ) found that estradiol enhanced Bcrp mRNA levels in cells stably expressing ERα , at similar estradiol concentra - tions . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer resistance protein (BCRP) is known for its protective function against the toxic effects of exogenous compounds. In addition to this, a role in the transport of endogenous compounds has been described. Since BCRP in the plasma membrane was shown to be regulated by sex steroids, we investigated the presence and possible role of BCRP in steroid hormone-producing organs. Therefore, the presence and localization of Bcrp was investigated in endocrine organs of wild-type mice. Furthermore, the interaction of various steroid hormones with human BCRP activity was studied. Quantitative PCR revealed Bcrp mRNA in the pituitary and adrenal glands, pancreas, ovary, testis and adipose tissue. Immunohistochemistry revealed the presence of Bcrp in the cortex of the adrenal gland and in plasma membranes of adipocytes. In the pituitary gland, pancreas, ovary and testis, Bcrp was mainly located in the capillaries. The interaction between BCRP and 12 steroid hormones was studied using membrane vesicles of HEK293-BCRP cells. Estradiol, testosterone, progesterone and androstenedione inhibited BCRP-mediated uptake of (3)H-estrone sulphate (E(1)S) most potently, with calculated inhibitory constant (Ki) values of 5.0 ± 0.2, 36 ± 14, 14.7 ± 1.3 and 217 ± 13 μM, respectively. BCRP function was attenuated non-competitively, which implies an allosteric inhibition of BCRP-mediated E(1)S transport by these steroids. In conclusion, localization of Bcrp in endocrine organs together with the efficient allosteric inhibition of the efflux pump by steroid hormones are suggestive for a role for BCRP in steroid hormone regulation.
    Cell and Tissue Research 05/2012; 349(2):551-63. DOI:10.1007/s00441-012-1417-5 · 3.57 Impact Factor
  • Source
    • "However, E2 has also been reported to increase BCRP protein expression in a human breast cancer cell line by signaling through ERα[30]. In a human placenta cell line, E2 signaled through ERβ to up-regulate BCRP [31]; and Anika M S Hartz et al. found that E2 signals through ERβ, PTEN/PI3K/Akt/GSK3 to down-regulate the expression of BCRP [32]. Thus, both ERαand ERβ can be involved in E2 regulation of BCRP, but the signals involved and the effect on BCRP (up- or down-regulation) seem to be inconsistent and tissue-specific. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ABCG2 is an ABC transporter. It has been demonstrated that endogenous ABCG2 expression in certain cancers is a possible reflection of the differentiated phenotype of the cell of origin and likely contributes to intrinsic drug resistance. But little is known about the contribution of ABCG2 to the drug resistance and the clinicopathological characteristics in breast cancer. In the present study, we investigated the expression of ABCG2 and the correlations between ABCG2 expression and patients' clinicopathological and biological characteristics. Immunohistochemistry was employed on the tissue microarray paraffin sections of surgically removed samples from 196 breast cancer patients with clinicopathological data. The results showed that ABCG2 was expressed in different intensities and distributions in the tumor cells of the breast invasive ductal carcinoma. A positive stain for ABCG2 was defined as a brown stain observed in the cytoplasm and cytomembrane. A statistically significant correlation was demonstrated between ABCG2 expression and HER-2 expression (p = 0.001), lymph node metastasis (p = 0.049), and clinical stage (p = 0.015) respectively. ABCG2 correlated with Her-2 expression, lymph node metastasis and clinical stage in breast invasive ductal carcinoma. It could be a novel potential bio-marker which can predict biological behavior, clinical progression, prognosis and chemotherapy effectiveness.
    Diagnostic Pathology 09/2011; 6(1):90. DOI:10.1186/1746-1596-6-90 · 2.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: At the blood-brain barrier (BBB), the ABC transporter breast cancer resistance protein (BCRP) actively extrudes a variety of therapeutic drugs, including cytostatics, and diminishes their pharmacological efficacy in the brain. Consequently, new strategies to circumvent BCRP-mediated multidrug resistance in the CNS are required. One major approach to increase brain drug levels is to manipulate signaling mechanisms that control transporter expression and function. In the present study, we investigated the long-term effect of 17β-estradiol on BCRP in an ex vivo model of isolated rat brain capillaries. BCRP function and protein expression were decreased after 6 h of incubation with nanomolar concentrations of 17β-estradiol in capillaries from male and female rats. Concomitantly, levels of BCRP mRNA were also reduced by 17β-estradiol suggesting that the transporter is down-regulated via a genomic pathway. Additionally, we identified the presence of both estrogen receptor (ER) subtypes α and β at the rat BBB. Experiments using selective ER agonists and antagonists revealed that ER subtype β is responsible for the hormone-induced reduction of BCRP function and protein expression. These findings were confirmed by the use of ERKO mice. Blocking the proteasome-dependent degradation by lactacystin reversed the 17β-estradiol-mediated decrease of BCRP supposing that transcriptional down-regulation of the efflux transporter is paralleled by protein degradation. This study demonstrates that 17β-estradiol induces the down-regulation of BCRP on transcriptional and translational levels via the activation of ERβ in rat brain capillaries after 6 h. These results could help to improve brain targeting of BCRP substrates in the treatment of CNS diseases such as brain tumors and also contribute to an enlarged understanding of BCRP-drug interactions at a chronic intake of phytoestrogens and oral contraceptives.
    Molecular Pharmaceutics 09/2010; 7(5). DOI:10.1021/mp1001729 · 4.38 Impact Factor
Show more