Dynamics of an emerging disease drive large-scale amphibian population extinctions

Department of Biology, San Francisco State University, San Francisco, CA 94132-1722, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 05/2010; 107(21):9689-94. DOI: 10.1073/pnas.0914111107
Source: PubMed

ABSTRACT Epidemiological theory generally suggests that pathogens will not cause host extinctions because the pathogen should fade out when the host population is driven below some threshold density. An emerging infectious disease, chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is directly linked to the recent extinction or serious decline of hundreds of amphibian species. Despite continued spread of this pathogen into uninfected areas, the dynamics of the host-pathogen interaction remain unknown. We use fine-scale spatiotemporal data to describe (i) the invasion and spread of Bd through three lake basins, each containing multiple populations of the mountain yellow-legged frog, and (ii) the accompanying host-pathogen dynamics. Despite intensive sampling, Bd was not detected on frogs in study basins until just before epidemics began. Following Bd arrival in a basin, the disease spread to neighboring populations at approximately 700 m/yr in a wave-like pattern until all populations were infected. Within a population, infection prevalence rapidly reached 100% and infection intensity on individual frogs increased in parallel. Frog mass mortality began only when infection intensity reached a critical threshold and repeatedly led to extinction of populations. Our results indicate that the high growth rate and virulence of Bd allow the near-simultaneous infection and buildup of high infection intensities in all host individuals; subsequent host population crashes therefore occur before Bd is limited by density-dependent factors. Preventing infection intensities in host populations from reaching this threshold could provide an effective strategy to avoid the extinction of susceptible amphibian species in the wild.


Available from: Vance T Vredenburg, Apr 14, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphibian chytridiomycosis, an emerging infectious disease caused by the fungus Batrachochytrium dendrobatidis (Bd), has been a significant driver of amphibian declines. While globally widespread, Bd had not yet been reported from within Madagascar. We document surveys conducted across the country between 2005 and 2014, showing Bd 's first record in 2010. Subsequently, Bd was detected in multiple areas, with prevalence reaching up to 100%. Detection of Bd appears to be associated with mid to high elevation sites and to have a seasonal pattern, with greater detectability during the dry season. Lineage-based PCR was performed on a subset of samples. While some did not amplify with any lineage probe, when a positive signal was observed, samples were most similar to the Global Panzootic Lineage (BdGPL). These results may suggest that Bd arrived recently, but do not exclude the existence of a previously undetected endemic Bd genotype. Representatives of all native anuran families have tested Bd-positive, and exposure trials confirm infection by Bd is possible. Bd's presence could pose significant threats to Madagascar's unique ''megadiverse'' amphibians.
    Scientific Reports 02/2015; 5, 8633. DOI:10.1038/srep08633 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Global spread of the pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) may involve dispersal mechanisms not previously explored. Weather systems accompanied by strong wind and rainfall have been known to assist the dispersal of microbes pathogenic to plants and animals, and we considered a similar phenomenon might occur with Bd. We investigated this concept by sampling rainwater from 20 precipitation events for the presence of Bd in Cusuco National Park, Honduras: a site where high Bd prevalence was previously detected in stream-associated amphibians. Quantitative PCR analysis confirmed the presence of Bd in rainwater in one (5 %) of the weather events sampled, although viability cannot be ascertained from molecular presence alone. The source of the Bd and distance that the contaminated rainwater traveled could not be determined; however, this collection site was located approximately 600 m from the nearest observed perennial river by straight-line aerial distance. Although our results suggest atmospheric Bd dispersal is uncommon and unpredictable, even occasional short-distance aerial transport could considerably expand the taxonomic diversity of amphibians vulnerable to exposure and at risk of decline, including terrestrial and arboreal species that are not associated with permanent water bodies.
    Aerobiologia 03/2015; DOI:10.1007/s10453-015-9374-6 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenic fungus Batrachochytrium dendrobatidis (Bd) is a major conservation concern because of its role in decimating amphibian populations worldwide. We used quantitative PCR to screen 244 museum specimens from the Korean Peninsula, collected between 1911 and 2004, for the presence of Bd to gain insight into its history in Asia. Three specimens of Rugosa emeljanovi (previously Rana or Glandirana rugosa), collected in 1911 from Wonsan, North Korea, tested positive for Bd. Histology of these positive specimens revealed mild hyperkeratosis - a non-specific host response commonly found in Bd-infected frogs - but no Bd zoospores or zoosporangia. Our results indicate that Bd was present in Korea more than 100 years ago, consistent with hypotheses suggesting that Korean amphibians may be infected by endemic Asian Bd strains.
    PLoS ONE 03/2015; 10(3):e0115656. DOI:10.1371/journal.pone.0115656 · 3.53 Impact Factor