In vitro genetic reconstruction of bacterial transcription initiation by coupled synthesis and detection of RNA polymerase holoenzyme

New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA.
Nucleic Acids Research (Impact Factor: 8.81). 05/2010; 38(13):e141. DOI: 10.1093/nar/gkq377
Source: PubMed

ABSTRACT In vitro reconstitution of a biological complex or process normally involves assembly of multiple individually purified protein components. Here we present a strategy that couples expression and assembly of multiple gene products with functional detection in an in vitro reconstituted protein synthesis system. The strategy potentially allows experimental reconstruction of a multi-component biological complex or process using only DNA templates instead of purified proteins. We applied this strategy to bacterial transcription initiation by co-expressing genes encoding Escherichia coli RNA polymerase subunits and sigma factors in the reconstituted protein synthesis system and by coupling the synthesis and assembly of a functional RNA polymerase holoenzyme with the expression of a reporter gene. Using such a system, we demonstrated sigma-factor-dependent, promoter-specific transcription initiation. Since protein synthesis, complex formation and enzyme catalysis occur in the same in vitro reaction mixture, this reconstruction process resembles natural biosynthetic pathways and avoids time-consuming expression and purification of individual proteins. The strategy can significantly reduce the time normally required by conventional reconstitution methods, allow rapid generation and detection of genetic mutations, and provide an open and designable platform for in vitro study and intervention of complex biological processes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Conspectus The expression of genes in a cell in response to external signals or internal programs occurs within an environment that is compartmentalized and dense. Reconstituting gene expression in man-made systems is relevant for the basic understanding of gene regulation, as well as for the development of applications in bio- and nanotechnology. DNA polymer brushes assembled on a surface emulate a dense cellular environment. In a regime of significant chain overlap, the highly charged nature of DNA, its entropic degrees of freedom, and its interaction with transcription/translation machinery lead to emergent collective biophysical and biochemical properties, which are summarized in this Account. First, we describe a single-step photolithographic biochip on which biomolecules can be immobilized. Then, we present the assembly of localized DNA brushes, a few kilo-base pairs long, with spatially varying density, reaching a DNA concentration of ∼10(7) base pairs/μm(3), which is comparable to the value in E. coli. We then summarize the response of brush height to changes in density and mono- and divalent ionic strength. The balance between entropic elasticity and swelling forces leads to a rich phase behavior. At no added salt, polymers are completely stretched due to the osmotic pressure of ions, and at high salt they assume a relaxed coil conformation. Midrange, the brush height scales with ratio of density and ionic strength to the third power, in agreement with the general theory of polyelectrolyte brushes. In response to trivalent cations, DNA brushes collapse into macroscopic dendritic condensates with hysteresis, coexistence, and a hierarchy of condensation with brush density. We next present an investigation of RNA transcription in the DNA brush. In general, the brush density entropically excludes macromolecules, depleting RNA polymerase concentration in the brush compared to the bulk, therefore reducing transcription rate. The orientation of transcription promoters with respect to the surface also affects the rate with a lower value for outward compared to inward transcription, likely due to local changes of RNA polymerase concentrations. We hypothesize that equalizing the macromolecular osmotic pressure between bulk and brush with the addition of inert macromolecules would overcome the entropic exclusion of DNA associated proteins, and lead to enhanced biochemical activity. Finally, we present protein synthesis cascades in DNA brushes patterned at close proximity, as a step toward biochemical signaling between brushes. Examining the synthesis of proteins polymerizing into crystalline tubes suggests that on-chip molecular traps serve as nucleation sites for protein assembly, thereby opening possibilities for reconstituting nanoscale protein assembly pathways.
    Accounts of Chemical Research 05/2014; 47(6). DOI:10.1021/ar5001428 · 24.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional activation of σ54-RNA polymerase holoenzyme (σ54-RNAP) in bacteria is dependent on a cis-acting DNA element (bacterial enhancer), which recruits the bacterial enhancer-binding protein to contact the holoenzyme via DNA looping. Using a constructive synthetic biology approach, we recapitulated such process of transcriptional activation by recruitment in a reconstituted cell-free system, assembled entirely from a defined number of purified components. We further engineered the bacterial enhancer-binding protein PspF to create an in vitro two-hybrid system (IVT2H), capable of carrying out gene regulation in response to expressed protein interactions. Compared to genetic systems and other in vitro methods, IVT2H not only allows detection of different types of protein interactions in just a few hours without involving cells, but also provides a general correlation of the relative binding strength of the protein interaction with the IVT2H signal. Due to its reconstituted nature, IVT2H provides a biochemical assay platform with a clean and defined background. We demonstrated the proof-of-concept of using IVT2H as an alternative assay for high throughput screening of small-molecule inhibitors of protein-protein interaction.
    Journal of the American Chemical Society 09/2014; 136(40). DOI:10.1021/ja502512g · 11.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crude extract based cell-free protein synthesis (CFPS) has emerged as a powerful technology platform for high-throughput protein production and genetic part characterization. Unfortunately, robust preparation of highly active extracts generally requires specialized and costly equipment and can be labor and time intensive. Moreover, cell lysis procedures can be hard to standardize, leading to different extract performance across laboratories. These challenges limit new entrants to the field and new applications, such as comprehensive genome engineering programs to improve extract performance. To address these challenges, we developed a generalizable and easily accessible high-throughput crude extract preparation method for CFPS based on sonication. To validate our approach, we investigated two Escherichia coli strains: BL21 Star™ (DE3) and a K12 MG1655 variant, achieving similar productivity (defined as CFPS yield in g/L) by varying only a few parameters. In addition, we observed identical productivity of cell extracts generated from culture volumes spanning three orders of magnitude (10 mL culture tubes to 10 L fermentation). We anticipate that our rapid and robust extract preparation method will speed-up screening of genomically engineered strains for CFPS applications, make possible highly active extracts from non-model organisms, and promote a more general use of CFPS in synthetic biology and biotechnology.
    Scientific Reports 03/2015; 5:8663. DOI:10.1038/srep08663 · 5.08 Impact Factor

Preview (2 Sources)

Available from