Physiological and histopathological investigations on the effects of alpha-lipoic acid in rats exposed to malathion.

Department of Biological Sciences, Faculty of Sciences, King Abdul Aziz University, P.O. Box 139109, Jeddah 21323, Saudi Arabia.
BioMed Research International (Impact Factor: 2.71). 01/2010; 2010:203503. DOI: 10.1155/2010/203503
Source: PubMed

ABSTRACT The present study was designed to evaluate the influence of alpha-lipoic acid treatment in rats exposed to malathion. Forty adult male rats were used in this study and distributed into four groups. Animals of group 1 were untreated and served as control. Rats of group 2 were orally given malathion at a dose level of 100 mg/kg body weight (BW) for a period of one month. Experimental animals of group 3 were orally given alpha-lipoic acid at a dose level of 20 mg/kg BW and after 3 hours exposed to malathion at the same dose given to group 2. Rats of group 4 were supplemented with alpha-lipoic acid at the same dose given to group 3. The activities of serum glutamic oxaloacetic acid transaminase (GOT), glutamic pyruvic acid transaminase (GPT), alkaline phosphatase (ALP), and acid phosphatase (ACP), and the values of creatinine, urea, and uric acid were statistically increased, while the values of total protein and total albumin were significantly decreased in rats exposed to malathion. Moreover, administration of malathion for one month resulted in damage of liver and kidney structures. Administration of alpha-lipoic acid before malathion exposure to rat can prevent severe alterations of hemato-biochemical parameters and disruptions of liver and kidney structures. In conclusion, this study obviously demonstrated that pretreatment with alpha-lipoic acid significantly attenuated the physiological and histopathological alterations induced by malathion. Also, the present study identifies new areas of research for development of better therapeutic agents for liver, kidney, and other organs' dysfunctions and diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: α-Lipoic acid (LA; 5-(1,2-dithiolan-3-yl)pentanoic acid) was originally isolated from bovine liver by Reed et al. in 1951. LA was once considered a vitamin. Subsequently, it was found that LA is not a vitamin and is synthesized by plants and animals. LA is covalently bound to the ε-amino group of lysine residues and functions as a cofactor for mitochondrial enzymes by catalyzing the oxidative decarboxylation of pyruvate, α-ketoglutarate and branched-chain α-keto acids. LA and its reduced form - dihydrolipoic acid (DHLA), meet all the criteria for an ideal antioxidant because they can easily quench radicals, can chelate metals, have an amphiphlic character and they do not exhibit any serious side effects. They interact with other antioxidants and can regenerate them. For this reason, LA is called an antioxidant of antioxidants. LA has an influence on the second messenger nuclear factor κB (NF-κB) and attenuates the release of free radicals and cytotoxic cytokines. The therapeutic action of LA is based on its antioxidant properties. Current studies support its use in the ancillary treatment of many diseases, such as diabetes, cardiovascular, neurodegenerative, autoimmune diseases, cancer and AIDS. This review was undertaken to gather the most recent information regarding the therapeutic properties of LA and its possible utility in disease treatment.
    Pharmacological reports: PR 07/2011; 63(4):849-58. · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetaminophen (APAP) is one of the most widely used analgesic antipyretic drugs and is a major cause of acute liver failure at over dose. The aim of this study is to investigate the possible protective effect of α-lipoic acid (α-LA, 20 or 100mg/kg administered simultaneously or after 1.5h) against APAP-induced hepatotoxicity in rats. Administration of APAP (1.5g/kg i.p.) resulted in elevation of serum ALT and hepatic malondialdehyde (MDA) content, as well as decrease in hepatic glutathione (GSH) content. In addition, elevation in hepatic hemeoxygenase-1 (HO-1) and NADPH oxidase expression was observed accompanied with a significant reduction in glutathione synthase and cystathionine-beta-synthase (CβS) expression. Furthermore, nuclear factor kappa-B (NF-κB) activity was enhanced in APAP-treated rats. Administration of the standard APAP antidote; N-acetylcysteine (NAC, 1200mg/kg) or α-LA (20mg/kg), simultaneously or 1.5h after APAP, ameliorated APAP-induced alterations in liver function, oxidant and inflammatory markers. Importantly, simultaneous administration of NAC or α-LA (20mg/kg) was more protective than their later administration. However, the beneficial effect of α-LA was lost at higher dose level (100mg/kg). Taken together, the beneficial effects of α-lipoic acid (20mg/kg) were comparable to those of NAC which provides a new possible treatment for APAP-induced hepatotoxicity in patients who cannot tolerate NAC. However, careful dose selection is warranted since the beneficial effects of α-LA were lost at higher doses.
    European journal of pharmacology 01/2014; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed to evaluate the effects of tea and olive leaves extracts and their combination in male mice intoxicated with a sublethal concentration of diazinon. Exposure of mice to 6.5 mg/kg body weight of diazinon for seven weeks resulted in statistical increases of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatine kinase, creatinine, glucose, triglycerides, and cholesterol, while the value of serum total protein was declined. Treating diazinon-intoxicated mice with tea and olive leaves extracts or their combination significantly attenuated the severe alterations in these hematobiochemical parameters. Moreover, the results indicated that the supplementation with combination of tea and olive leaves extracts led to more attenuation effect against diazinon toxicity. Additionally, these new findings suggest that the effect of tea and olive leaves extracts and their combination against toxicity of diazinon may be due to antioxidant properties of their chemical constituents. Finally, the present study indicated that the extracts of tea and olive leaves and their combination can be considered as promising therapeutic agents against hepatotoxicity, cardiotoxicity, nephrotoxicity, and metabolic disorders induced by diazinon and maybe by other toxicants and pathogenic factors.
    BioMed research international. 01/2013; 2013:461415.

Full-text (2 Sources)

Available from