Article

Interferon γ–Induced Human Guanylate Binding Protein 1 Inhibits Mammary Tumor Growth in Mice

Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
Molecular Medicine (Impact Factor: 4.82). 06/2010; 16(5-6):177-87. DOI: 10.2119/molmed.2009.00172
Source: PubMed

ABSTRACT Interferon gamma (IFN-gamma) has recently been implicated in cancer immunosurveillance. Among the most abundant proteins induced by IFN-gamma are guanylate binding proteins (GBPs), which belong to the superfamily of large GTPases and are widely expressed in various species. Here, we investigated whether the well-known human GBP-1 (hGBP-1), which has been shown to exert antiangiogenic activities and was described as a prognostic marker in colorectal carcinomas, may contribute to an IFN-gamma-mediated tumor defense. To this end, an IFN-independent, inducible hGBP-1 expression system was established in murine mammary carcinoma (TS/A) cells, which were then transplanted into syngeneic immune-competent Balb/c mice. Animals carrying TS/A cells that had been given doxycycline for induction of hGBP-1 expression revealed a significantly reduced tumor growth compared with mock-treated mice. Immunohistochemical analysis of the respective tumors demonstrated a tightly regulated, high-level expression of hGBP-1. No signs of an enhanced immunosurveillance were observed by investigating the number of infiltrating B and T cells. However, hemoglobin levels as well as the number of proliferating tumor cells were shown to be significantly reduced in hGBP-1-expressing tumors. This finding corresponded to reduced amounts of vascular endothelial growth factor A (VEGF-A) released by hGBP-1-expressing TS/A cells in vitro and reduced VEGF-A protein levels in the corresponding mammary tumors in vivo. The results suggest that hGBP-1 may contribute to IFN-gamma-mediated antitumorigenic activities by inhibiting paracrine effects of tumor cells on angiogenesis. Consequently, owing to these activities GBPs might be considered as potent members in an innate, IFN-gamma-induced antitumoral defense system.

0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During mammary tumorigenesis, there is a profound tumor-induced immunosuppression and a progressive thymic atrophy associated with tumor development. IFN-γ has been shown to be effective in enhancing antitumor responses in several tumor models, however, how IFN-γ exerts its anti-tumor effect is largely controversial. In the present study we have used a mammary tumor model to investigate whether the levels of IFN-γ have an important role in the tumor-induced immuno-suppression as well as in the pathogenesis of the thymic atrophy. We evaluated this possibility using DA-3 cells transfected to express IFN-γ (DA-3/IFN-γ), a system that provides constant, local production of IFN-γ within the tumor microenvironment. Overexpression of IFN-γ in the mammary tumor results in a marked delay of tumor growth, a reduction in regulatory T cells and myeloid-derived suppressor cells accumulation mostly due to down-regulation of chemokines implicated in the recruitment of immune regulatory cells, and a blockage in the tumor-associated thymus atrophy. Collectively, our data suggest that the replacement of the faulty levels of IFN-γ in the tumor results in a diminution of the tumor-induced immune suppression caused by the mammary tumor development.
    International Journal of Oncology 08/2011; 39(6):1619-27. DOI:10.3892/ijo.2011.1169 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation associated with obesity may play a role in colorectal carcinogenesis, but the underlying mechanism remains unclear. This study investigated whether the Wnt pathway, an intracellular signaling cascade that plays a critical role in colorectal carcinogenesis, is activated by obesity-induced elevation of the inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Animal studies were conducted on C57BL/6 mice, and obesity was induced by utilizing a high-fat diet (60% kcal). An inflammation-specific microarray was performed, and results were confirmed with real-time polymerase chain reaction. The array revealed that diet-induced obesity increased the expression of TNF-α in the colon by 72% (P=.004) and that of interleukin-18 by 41% (P=.023). The concentration of colonic TNF-α protein, determined by ex vivo culture assay, was nearly doubled in the obese animals (P=.002). The phosphorylation of glycogen synthase kinase 3 beta (GSK3β), an important intermediary inhibitor of Wnt signaling and a potential target of TNF-α, was quantitated by immunohistochemistry. The inactivated (phosphorylated) form of GSK3β was elevated in the colonic mucosa of obese mice (P<.02). Moreover, β-catenin, the key effector of canonical Wnt signaling, was elevated in the colons of obese mice (P<.05), as was the expression of a downstream target gene, c-myc (P<.05). These data demonstrate that diet-induced obesity produces an elevation in colonic TNF-α and instigates a number of alterations of key components within the Wnt signaling pathway that are protransformational in nature. Thus, these observations offer evidence for a biologically plausible avenue, the Wnt pathway, by which obesity increases the risk of colorectal cancer.
    The Journal of nutritional biochemistry 12/2011; 23(10):1207-13. DOI:10.1016/j.jnutbio.2011.07.002 · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Guanylate binding proteins (GBPs) belong to the dynamin superfamily of large GTP binding proteins. A biochemical feature common to these proteins is guanosine-triphosphate (GTP) binding leading to self-assembly of the proteins, and this in turn results in higher catalytic GTP hydrolysis activity. In the case of human guanylate binding protein 1 (hGBP1) homodimer formation is observed after binding of nonhydrolyzable GTP analogs like GppNHp. hGBP1 is one of seven GBP isoforms identified in human. While cellular studies suggest heterocomplex formation of various isoforms biochemical binding studies in quantitative terms are lacking. In this work we established a method to study hGBP1 interactions by attaching this protein in a defined orientation to a surface allowing for interaction with molecules from the solution. Briefly, specifically biotinylated hGBP1 is attached to a streptavidin layer on a self-assembled monolayer (SAM) surface allowing for characterization of the packing density of the immobilized protein by surface plasmon resonance (SPR) technology and atomic force microscopy (AFM), respectively. In addition, the enzymatic activity of immobilized hGBP1 and the kinetics of interaction with binding partners in solution are quantified. We present a procedure for attaching an enzyme in a defined orientation to a surface which exposes its active end, the GTPase domain to the solution resulting in a homogeneous population of this enzyme in terms of enzymatic activity and of interaction with soluble proteins.
    Langmuir 04/2012; 28(15):6411-8. DOI:10.1021/la3008359 · 4.46 Impact Factor
Show more