Article

Biphasic and bilateral changes in striatal VGLUT1 and 2 protein expression in hemi-Parkinson rats.

Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
Neurochemistry International (Impact Factor: 2.65). 05/2010; 57(2):111-8. DOI: 10.1016/j.neuint.2010.04.019
Source: PubMed

ABSTRACT Parkinson's disease is characterized by disturbed glutamatergic neurotransmission in the striatum. Important mediators of extracellular glutamate levels are the vesicular glutamate transporters VGLUT1 and VGLUT2 in respectively corticostriatal and thalamostriatal afferents, next to the high-affinity Na(+)/K(+)-dependent glutamate transporters and the cystine/glutamate antiporter. In the present study, we compared bilateral striatal VGLUT1 and VGLUT2 protein expression as well as VGLUT1 and VGLUT2 transcript levels in the neocortex and parafascicular nucleus of hemi-Parkinson rats at different time intervals post unilateral 6-OHDA injection into the medial forebrain bundle versus controls. Three weeks post-injection we detected increased striatal VGLUT1 expression together with decreased VGLUT2 expression. On the other hand, after twelve weeks, the expression of VGLUT1 was decreased in hemi-Parkinson rats whereas the striatal expression of VGLUT2 was comparable to control rats. No effect could be seen on VGLUT transcript levels in the respective projection areas at any time. In conclusion, we observed a biphasic and bilateral change in the protein expression levels of both VGLUTs in the striatum of hemi-Parkinson rats indicative for a different and time-dependent change in glutamatergic neurotransmission from the two types of striatal afferents.

0 Bookmarks
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
    BMC Neuroscience 12/2013; 14(1):152. · 2.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long term treatment with L-3,4-dihydroxyphenylalanine (l-DOPA) is associated with several motor complications. Clinical improvement of this treatment is therefore needed. Lesions or high frequency stimulation of the hyperactive subthalamic nucleus (STN) in Parkinson's disease (PD), alleviate the motor symptoms and reduce dyskinesia, either directly and/or by allowing the reduction of the l-DOPA dose. N-methyl-d-aspartate (NMDA) receptor antagonists might have similar actions. However it remains elusive how the neurochemistry changes in the STN after a separate or combined administration of l-DOPA and a NMDA receptor antagonist. By means of in vivo microdialysis, the effect of l-DOPA and/or MK 801, on the extracellular dopamine (DA) and glutamate (GLU) levels was investigated for the first time in the STN of sham and 6-hydroxydopamine-lesioned rats. The l-DOPA-induced DA increase in the STN was significantly higher in DA-depleted rats compared to shams. MK 801 did not influence the l-DOPA-induced DA release in shams. However, MK 801 enhanced the l-DOPA-induced DA release in hemi-parkinson rats. Interestingly, the extracellular STN GLU levels remained unchanged after nigral degeneration. Furthermore, administration of MK 801 alone or combined with l-DOPA did not alter the STN GLU levels in both sham and DA-depleted rats. The present study does not support the hypothesis that DA-ergic degeneration influences the STN GLU levels neither that MK 801 alters the GLU levels in lesioned and non-lesioned rats. However, NMDA receptor antagonists could be used as a beneficial adjuvant treatment for PD by enhancing the therapeutic efficacy of l-DOPA at least in part in the STN.
    Neuropharmacology 10/2014; 85:198–205. · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) International League Against Epilepsy type1 (ILAE type1) compared to autopsy controls, using quantitative polymerase chain reaction and semi-quantitative Western blotting. mRNA expression levels of the VGLUTs are unaffected in hippocampal epileptic tissue compared to autopsy controls. At the protein level, VGLUT1 expression remaines unaltered, while VGLUT2 is significantly decreased and VGLUT3 protein is significantly increased in hippocampal biopsies from TLE patients compared to controls. Our findings at the protein level can be explained by previously described histopathological changes observed in HS. Although VGLUTs have been repeatedly investigated in distinct rodent epilepsy models, their expression levels were hitherto not fully unraveled in the most difficult-to-treat form of epilepsy: TLE with HS ILAE type1. We here demonstrate for the first time that VGLUT2 protein expression is significantly decreased and VGLUT3 protein is significantly increased in the hippocampus of patients suffering from TLE with HS ILAE type1 compared to autopsy controls. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
    Neuroscience Letters 02/2015; · 2.06 Impact Factor

Full-text

Download
63 Downloads
Available from
Jun 2, 2014