Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results.

Bruker BioSpin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA.
Physical Chemistry Chemical Physics (Impact Factor: 3.83). 06/2010; 12(22):5850-60. DOI: 10.1039/c003685b
Source: PubMed

ABSTRACT Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surface-enhanced solid-state NMR spectroscopy (DNP-SENS), which provides selective and enhanced NMR signal collection from the (near) surface regions of a sample, can be used to resolve the core-shell structure of a nanoparticle. Li-ion anode materials, monodisperse 10-20 nm large tin nanoparticles covered with a ∼3 nm thick layer of native oxides, were used in this case study. DNP-SENS selectively enhanced the weak (119)Sn NMR signal of the amorphous surface SnO2 layer. Mössbauer and X-ray absorption spectroscopies identified a subsurface SnO phase and quantified the atomic fractions of both oxides. Finally, temperature-dependent X-ray diffraction measurements were used to probe the metallic β-Sn core and indicated that even after 8 months of storage at 255 K there are no signs of conversion of the metallic β-Sn core into a brittle semiconducting α-phase, a phase transition which normally occurs in bulk tin at 286 K (13 °C). Taken together, these results indicate that Sn/SnOx nanoparticles have core/shell1/shell2 structure of Sn/SnO/SnO2 phases. The study suggests that DNP-SENS experiments can be carried on many types of uniform colloidal nanomaterials containing NMR-active nuclei, in the presence of either hydrophilic (ion-capped surfaces) or hydrophobic (capping ligands with long hydrocarbon chains) surface functionalities.
    ACS Nano 02/2014; · 12.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this contribution, the latest developments in solid state NMR are presented in the field of organic–inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
    Progress in Nuclear Magnetic Resonance Spectroscopy 01/2014; 77:1–48. · 6.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.
    Journal of Magnetic Resonance 12/2013; 239C:91-99. · 2.30 Impact Factor

Shane Pawsey