Article

Arsenic Exposure In Utero and Nonepidermal Proliferative Response in Adulthood in Tg.AC Mice

National Cancer Institute at NIEHS, Research Triangle Park, NC 27709, USA.
International Journal of Toxicology (Impact Factor: 1.23). 05/2010; 29(3):291-6. DOI: 10.1177/1091581810362804
Source: PubMed

ABSTRACT To expand our knowledge on the transplacental carcinogenic potential of inorganic arsenic, pregnant Tg.AC mice received drinking water with 0, 42.5, or 85 ppm arsenite from gestation day 8 to 18. After birth, groups (n = 25) of offspring received topical 12-O-tetradecanoyl phorbol-13-acetate (TPA) (2 microg twice a week) for 36 weeks and were killed; nonskin tumors were assessed. Arsenic increased adrenal cortical adenomas (ACAs; 25%-29%) compared with control (0%) independent of TPA in all male groups. Arsenic increased urinary bladder (UB) hyperplasia in males, but only with TPA. Arsenic induced ACAs in all female groups (control 0%; arsenic 17%-26%). Arsenic-treated females had UB hyperplasia in most groups (control 0%; arsenic 26%-32%), with 2 UB papillomas. All arsenic-treated females had uterine hyperplasia (26%-40%; control 4%) independent of TPA, and 3 had uterine tumors. Thus, arsenic in utero rapidly induces ACAs and uterine and UB preneoplasias in Tg.AC mice, showing transplacental carcinogenic potential in yet another strain of mice.

0 Bookmarks
 · 
54 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal exposure to trace metals, whether they are essential, non-essential, or toxic, must be assessed for their potential health effects in the offspring. Herein is reported an approach to this end which involved collection of urine samples during the first and third trimesters of pregnancy from 489 mothers from Sabadell (Catalonia, Spain), a highly industrialized town. These samples were analyzed for cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), arsenic (As), molybdenum (Mo), cadmium (Cd), antimonium (Sb), cesium (Cs), thallium (Tl), and lead (Pb). An acid digestion method was developed and validated for inductively coupled plasma quadruple mass spectrometry (Q-ICP-MS) analysis of these 12 metals. The median concentrations of metals ranged from 0.13 to 290 μg/g creatinine, the highest levels were found for Zn and the lowest for Th. The mean concentrations of most metals except As, Ni, Th, and Pb showed statistically significant differences between both trimesters. The concentrations of Mo, Se, Cd, Cs, and Sb were higher in the first than in the third trimester, whereas the opposite was found for Co, Cu, and Zn. The concentrations of all metals in both sampling periods showed statistically significant correlations (p < 0.01 for Mo and Cu, p < 0.001 for the others). The significant correlations of metal urine concentrations in the first and third trimesters of pregnancy suggest that the observed differences between both periods are related to physiological changes. Accordingly, the measured urine concentrations during either the first or third trimesters can be used as estimates of exposure during pregnancy and can serve as markers for prenatal intake of these metals in the studied cohort.
    Environmental Science and Pollution Research 04/2014; 21(15). DOI:10.1007/s11356-014-2827-6 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Inorganic arsenic (iAs) at high exposures is a human carcinogen, affecting mainly the urinary bladder, lung and skin. We present an assessment of the mode of action (MOA) of iAs's carcinogenicity based on the United States Environmental Protection Agency/International Programme on Chemical Safety (USEPA/IPCS) framework, focusing primarily on bladder cancer. Evidence is presented for a MOA involving formation of reactive trivalent metabolites interacting with critical cellular sulfhydryl groups, leading to cytotoxicity and regenerative cell proliferation. Metabolism, kinetics, cell transport, and reaction with specific proteins play a critical role in producing the effects at the cellular level, regardless of cell type, whether urothelium, lung epithelium or epidermis. The cytotoxicity induced by iAs results in non-cancer toxicities, and the regenerative cell proliferation enhances development of epithelial cancers. In other tissues, such as vascular endothelium, different toxicities develop, not cancer. Evidence supporting this MOA comes from in vitro investigations on animal and human cells, from animal models, and from epidemiological studies. This MOA implies a non-linear, threshold dose-response relationship for both non-cancer and cancer end points. The no effect levels in animal models (approximately 1 ppm of water or diet) and in vitro (>0.1 µM trivalent arsenicals) are strikingly consistent. Cancer effects of iAs in humans generally are not observed below exposures of 100-150 ppb in drinking water: below these exposures, human urine concentrations of trivalent metabolites are generally below 0.1 µM, a concentration not associated with bladder cell cytotoxicity in in vitro or animal models. Environmental exposures to iAs in most of the United States do not approach this threshold.
    Critical Reviews in Toxicology 10/2013; 43(9):711-52. DOI:10.3109/10408444.2013.827152 · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-life inorganic arsenic exposure influences not only child health and development but also health in later life. The adverse effects of arsenic may be mediated by epigenetic mechanisms, as there are indications that arsenic causes altered DNA methylation of cancer-related genes. The objective was to assess effects of arsenic on genome-wide DNA methylation in newborns. We studied 127 mothers and cord blood of their infants. Arsenic exposure in early and late pregnancy was assessed by concentrations of arsenic metabolites in maternal urine, measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Genome-wide 5-methylcytosine methylation in mononuclear cells from cord blood was analyzed by Infinium HumanMethylation450K BeadChip. Urinary arsenic in early gestation was associated with cord blood DNA methylation (Kolmogorov–Smirnov test, P-value<10–15), with more pronounced effects in boys than in girls. In boys, 372 (74%) of the 500 top CpG sites showed lower methylation with increasing arsenic exposure (r S -values>−0.62), but in girls only 207 (41%) showed inverse correlation (r S -values>−0.54). Three CpG sites in boys (cg15255455, cg13659051 and cg17646418), but none in girls, were significantly correlated with arsenic after adjustment for multiple comparisons. The associations between arsenic and DNA methylation were robust in multivariable-adjusted linear regression models. Much weaker associations were observed with arsenic exposure in late compared with early gestation. Pathway analysis showed overrepresentation of affected cancer-related genes in boys, but not in girls. In conclusion, early prenatal arsenic exposure appears to decrease DNA methylation in boys. Associations between early exposure and DNA methylation might reflect interference with de novo DNA methylation.
    Journal of Developmental Origins of Health and Disease 04/2014; DOI:10.1017/S2040174414000221 · 0.77 Impact Factor