Hemopoietic and angiogenetic progenitors in healthy athletes: Different responses to endurance and maximal exercise

Biomedical Department, Internal and Specialistic Medicine (DIBIMIS), Section of Pneumology, University of Palermo, Via Trabucco, 180, 90146 Palermo, Italy.
Journal of Applied Physiology (Impact Factor: 3.06). 05/2010; 109(1):60-7. DOI: 10.1152/japplphysiol.01344.2009
Source: PubMed


The effects of endurance or maximal exercise on mobilization of bone marrow-derived hemopoietic and angiogenetic progenitors in healthy subjects are poorly defined. In 10 healthy amateur runners, we collected venous blood before, at the end of, and the day after a marathon race (n = 9), and before and at the end of a 1.5-km field test (n = 8), and measured hemopoietic and angiogenetic progenitors by flow cytometry and culture assays, as well as plasma or serum concentrations of several cytokines/growth factors. After the marathon, CD34(+) cells were unchanged, whereas clonogenetic assays showed decreased number of colonies for both erythropoietic (BFU-E) and granulocyte-monocyte (CFU-GM) series, returning to baseline the morning post-race. Conversely, CD34(+) cells, BFU-E, and CFU-GM increased after the field test. Angiogenetic progenitors, assessed as CD34(+)KDR(+) and CD133(+)VE-cadherin(+) cells or as adherent cells in culture expressing endothelial markers, increased after both endurance and maximal exercise but showed a different pattern between protocols. Interleukin-6 increased more after the marathon than after the field test, whereas hepatocyte growth factor and stem cell factor increased similarly in both protocols. Plasma levels of angiopoietin (Ang) 1 and 2 increased after both types of exercise, whereas the Ang-1-to-Ang-2 ratio or vascular endothelial growth factor-A were little affected. These data suggest that circulating hemopoietic progenitors may be utilized in peripheral tissues during prolonged endurance exercise. Endothelial progenitor mobilization after exercise in healthy trained subjects appears modulated by the type of exercise. Exercise-induced increase in growth factors suggests a physiological trophic effect of exercise on the bone marrow.

28 Reads
  • Source
    • "The protocol of the secondary CFU assay is extremely time consuming and must be carried out with fresh material. In this pilot study, the sample size so was limited to eight participants (ultimately seven after application of the exclusion criteria) and two time points, as is common in competitive field studies (Ronsen et al., 2004; Bonsignore et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.
    Scandinavian Journal of Medicine and Science in Sports 09/2015; 25(5). DOI:10.1111/sms.12347 · 2.90 Impact Factor
  • Source
    • "Circulating hematopoietic stem and progenitor cells (CPCs) are rare in human peripheral blood. Nevertheless, CPC numbers can increase under special conditions such as exercise-induced physical stress [1], [2], inflammation [3] and hypoxia [4]. Exercise has a complex influence on the body, making the exact mechanisms responsible for CPC mobilization and the influence on CPC functionality/proliferative capacity difficult to identify [5]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.
    PLoS ONE 09/2014; 9(9):e106120. DOI:10.1371/journal.pone.0106120 · 3.23 Impact Factor
  • Source
    • "One possible explanation is that IHH and ME may be more aggressive stimuli in older than for younger subjects. Some studies have reported a time-dependent increase in CPC count after a cycle incremental exercise test under normoxic or hypoxic conditions, increasing 10 min after exercise [21], during 240 min of strenuous exercise [22] and after a marathon race or 1500m field test [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Our goal was to test whether short-term intermittent hypobaric hypoxia (IHH) at a level well tolerated by healthy humans could, in combination with muscle electro-stimulation (ME), mobilize circulating progenitor cells (CPC) and increase their concentration in peripheral circulation. Methods Nine healthy male subjects were subjected, as the active group (HME), to a protocol involving IHH plus ME. IHH exposure consisted of four, three-hour sessions at a barometric pressure of 540 hPa (equivalent to an altitude of 5000 m). These sessions took place on four consecutive days. ME was applied in two separate 20-minute periods during each IHH session. Blood samples were obtained from an antecubital vein on three consecutive days immediately before the experiment, and then 24 h, 48 h, 4 days, 7 days and 14 days after the last day of hypoxic exposure. Four months later a control study was carried out involving seven of the original subjects (CG), who underwent the same protocol of blood samples but without receiving any special stimulus. Results In comparison with the CG the HME group showed only a non-significant increase in the number of CPC CD34+ cells on the fourth day after the combined IHH and ME treatment. Conclusion CPC levels oscillated across the study period and provide no firm evidence to support an increased CPC count after IHH plus ME, although it is not possible to know if this slight increase observed is physiologically relevant. Further studies are required to understand CPC dynamics and the physiology and physiopathology of the hypoxic stimulus.
    Journal of Translational Medicine 06/2014; 12(1):174. DOI:10.1186/1479-5876-12-174 · 3.93 Impact Factor
Show more