Induction of heart failure by minimally invasive aortic constriction in mice: Reduced peroxisome proliferator-activated receptor γ coactivator levels and mitochondrial dysfunction

Department of Cardiac Surgery, University of Leipzig Heart Center, Leipzig, Germany.
The Journal of thoracic and cardiovascular surgery (Impact Factor: 4.17). 05/2010; 141(2):492-500, 500.e1. DOI: 10.1016/j.jtcvs.2010.03.029
Source: PubMed


Mitochondrial dysfunction has been suggested as a potential cause for heart failure. Pressure overload is a common cause for heart failure. However, implementing pressure overload in mice is considered a model for compensated hypertrophy but not for heart failure. We assessed the suitability of minimally invasive transverse aortic constriction to induce heart failure in C57BL/6 mice and assessed mitochondrial biogenesis and function.
Minimally invasive transverse aortic constriction was performed through a ministernotomy without intubation (minimally invasive transverse aortic constriction, n = 68; sham operation, n = 43). Hypertrophy was assessed based on heart weight/body weight ratios and histologic analyses, and contractile function was assessed based on intracardiac Millar pressure measurements. Expression of selected metabolic genes was assessed with reverse transcription-polymerase chain reaction and Western blotting. Maximal respiratory capacity (state 3) of isolated mitochondria was measured with a Clark-type electrode.
Survival was 62%. Within 7 weeks, minimally invasive transverse aortic constriction induced significant hypertrophy (heart weight/body weight ratio: 10.08±0.28 mg/g for minimally invasive transverse aortic constriction vs 4.66±0.07 mg/g for sham operation; n=68; P<.01). Fifty-seven percent of mice undergoing minimally invasive transverse aortic constriction displayed signs of heart failure (pleural effusions, dyspnea, weight loss, and dp/dtmax of 3114±422 mm Hg/s, P<.05). All of them had heart weight/body weight ratios of greater than 10. Mice undergoing minimally invasive transverse aortic constriction with heart weight/body weight ratios of less than 10 had normal contractile function (dp/dtmax of 6471±292 mm Hg/s vs dp/dtmax of 6933±205 mmHg/s in sham mice) and no clinical signs of heart failure. The mitochondrial coactivator peroxisome proliferator-activated receptor γ coactivator alpha (PGC-1α) was downregulated in failing hearts only. PGC-1α and fatty acid oxidation gene expression were also decreased in failing hearts. State 3 respiration of isolated mitochondria was significantly reduced in all hearts subjected to pressure overload.
Contractile dysfunction and heart failure can be induced in wild-type mice by means of minimally invasive aortic constriction. Pressure overload-induced heart failure in mice is associated with mitochondrial dysfunction, as characterized by downregulation of PGC-1α and reduced oxidative capacity.

12 Reads
  • Source
    • "Muscle oxidative capacity and thus mitochondrial content largely depend on mitochondrial biogenesis and are linked to the activity of the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) that is considered as the master regulator of energy metabolism [1]. In many tissues, an abnormal regulation of PGC-1α results in pathological consequences and we and others have shown that heart failure is tightly associated with a decrease in PGC-1α mRNA and protein expression in different rodent models [2], [3], [4] or in humans [5], [6] leading to energetic deficiency of the myocardium, while other studies pointed to a deficit of PGC-1α coactivating targets involved in mitochondrial biogenesis and mitochondrial DNA replication both in humans [7], [8] and animal models [8]. These alterations are accompanied by a deregulation of several mitochondrial pathways including, fatty acid utilization, mitochondrial biogenesis, and detoxification pathways. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial function is dramatically altered in heart failure (HF). This is associated with a decrease in the expression of the transcriptional coactivator PGC-1α, which plays a key role in the coordination of energy metabolism. Identification of compounds able to activate PGC-1α transcription could be of future therapeutic significance. We thus developed a robotized cellular assay to screen molecules in order to identify new activators of PGC-1α in a cardiac-like cell line. This screening assay was based on both the assessment of activity and gene expression of a secreted luciferase under the control of the human PGC-1α promoter, stably expressed in H9c2 cells. We screened part of a library of human endogenous ligands and steroid hormones, B vitamins and fatty acids were identified as activators of PGC-1α expression. The most responsive compounds of these families were then tested for PGC-1α gene expression in adult rat cardiomyocytes. These data highly confirmed the primary screening, and the increase in PGC-1α mRNA correlated with an increase in several downstream markers of mitochondrial biogenesis. Moreover, respiration rates of H9c2 cells treated with these compounds were increased evidencing their effectiveness on mitochondrial biogenesis. Using our cellular reporter assay we could identify three original families, able to activate mitochondrial biogenesis both in cell line and adult cardiomyocytes. This first screening can be extended to chemical libraries in order to increase our knowledge on PGC-1α regulation in the heart and to identify potential therapeutic compounds able to improve mitochondrial function in HF.
    PLoS ONE 10/2012; 7(10):e46753. DOI:10.1371/journal.pone.0046753 · 3.23 Impact Factor
  • Source
    • "Although mitochondrial uncoupling should not always be seen as deleterious (Duteil et al., 2010; Tran et al., 2012), besides mitochondrial respiratory chain activities impairment, PO might be associated with mitochondrial uncoupling particularly in case of heart failure. Accordingly, Faerber's et al. observed not only reduced respiratory rates but also reduced mitochondrial coupling in mice hearts after aortic banding performed between the brachiocephalic trunk and the left carotid artery (Faerber et al., 2011). Thus, a loss of efficiency in ATP production was observed both in the failing hearts and in cardiac hypertrophy without heart failure. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Increased mechanical stress and contractility characterizes normal left ventricular (LV) subendocardium (Endo) but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi) and whether pressure overload-induced LV hypertrophy (LVH) might modulate transmural gradients through increased reactive oxygen species (ROS) production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n = 10 for each group). Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilized fibers, Amplex Red fluorescence and citrate synthase activity. Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P < 0.01) and complex IV activity (-57.4%, P < 0.05). Mitochondrial hydrogen peroxide (H(2)O(2)) production was similar in both LV layers. Aortic banding induced mild LVH (+31.7% LV mass), associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%), increased mitochondrial H(2)O(2) production (+86.9 and +73.1%), free radical leak (+27.2% and +36.3%) and citrate synthase activity (+27.2% and +36.3%) in Endo and Epi, respectively. Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs. -12.2%; P = 0.02). Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.
    Frontiers in Physiology 08/2012; 3(3, article 332):332. DOI:10.3389/fphys.2012.00332 · 3.53 Impact Factor
  • Source
    • "The impairment of the ETC is, therefore, generally not believed to be caused by a change in mtDNA content or quality [82, 88]. Rather it has been proposed that the mitochondrial transcription factor A (TFAM) and the corresponding nuclear respiratory factor 2 (NRF-2) are downregulated resulting in a decreased transcription of mitochondrial DNA [82, 84]. TFAM and NRF-2 are downstream targets of the transcriptional coactivator PGC-1α. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative phosphorylation is an indispensable resource of ATP in tissues with high requirement of energy. If the ATP demand is not met, studies suggest that this will lead to senescence and cell death in the affected tissue. The term reserve respiratory capacity or spare respiratory capacity is used to describe the amount of extra ATP that can be produced by oxidative phosphorylation in case of a sudden increase in energy demand. Depletion of the reserve respiratory capacity has been related to a range of pathologies affecting high energy requiring tissues. During aging of an organism, and as a result of mitochondrial dysfunctions, the efficiency of oxidative phosphorylation declines. Based on examples from the energy requiring tissues such as brain, heart, and skeletal muscle, we propose that the age-related decline of oxidative phosphorylation decreases the reserve respiratory capacity of the affected tissue, sensitizes the cells to surges in ATP demand, and increases the risk of resulting pathologies.
    Journal of aging research 06/2012; 2012(4):192503. DOI:10.1155/2012/192503
Show more