Article

Deciphering the splicing code

Biomedical Engineering, Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto M5S 3G4, Canada.
Nature (Impact Factor: 42.35). 05/2010; 465(7294):53-9. DOI: 10.1038/nature09000
Source: PubMed

ABSTRACT Alternative splicing has a crucial role in the generation of biological complexity, and its misregulation is often involved in human disease. Here we describe the assembly of a 'splicing code', which uses combinations of hundreds of RNA features to predict tissue-dependent changes in alternative splicing for thousands of exons. The code determines new classes of splicing patterns, identifies distinct regulatory programs in different tissues, and identifies mutation-verified regulatory sequences. Widespread regulatory strategies are revealed, including the use of unexpectedly large combinations of features, the establishment of low exon inclusion levels that are overcome by features in specific tissues, the appearance of features deeper into introns than previously appreciated, and the modulation of splice variant levels by transcript structure characteristics. The code detected a class of exons whose inclusion silences expression in adult tissues by activating nonsense-mediated messenger RNA decay, but whose exclusion promotes expression during embryogenesis. The code facilitates the discovery and detailed characterization of regulated alternative splicing events on a genome-wide scale.

Download full-text

Full-text

Available from: Benjamin J Blencowe, Jun 30, 2015
0 Followers
 · 
302 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.
    The EMBO Journal 01/2015; 34(5). DOI:10.15252/embj.201489852 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-mRNA splicing relies on the poorly understood dynamic interplay between >150 protein components of the spliceosome. The steps at which splicing can be regulated remain largely unknown. We systematically analyzed the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and used this information to reconstruct a network of functional interactions. The network accurately captures known physical and functional associations and identifies new ones, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during spliceosome assembly. In contrast with standard models of regulation at early steps of splice site recognition, factors involved in catalytic activation of the spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF, and on targets of antitumor drugs, and can be widely used to identify mechanisms of splicing regulation
    Molecular Cell 01/2015; DOI:10.1016/j.molcel.2014.10.030 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alternative splicing emerges as a potent and pervasive mechanism of gene expression regulation that expands the coding capacity of the genome and forms an intermediate layer of regulation between transcriptional and post-translational networks. Indeed, alternative splicing occupies a pivotal position in developmental programs and in the cell response to external and internal stimuli. Not surprisingly, therefore, its deregulation frequently leads to human disease. In this review we provide an updated overview of the impact of alternative splicing on tumorigenesis. Moreover, we discuss the intricacy of the reciprocal interactions between alternative splicing programs and signal transduction pathways, which appear to be crucially linked to cancer progression in response to the tumor microenvironment. Finally we focus on the recently described interplay between splicing and chromatin organization which is expected to shed new lights into gene expression regulation in normal and cancer cells.
    Seminars in Cell and Developmental Biology 08/2014; 32. DOI:10.1016/j.semcdb.2014.03.016 · 5.97 Impact Factor