Article

BI-97C1, an Optically Pure Apogossypol Derivative as Pan-Active Inhibitor of Antiapoptotic B-Cell Lymphoma/Leukemia-2 (Bcl-2) Family Proteins

Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 05/2010; 53(10):4166-76. DOI: 10.1021/jm1001265
Source: PubMed

ABSTRACT In our continued attempts to identify novel and effective pan-Bcl-2 antagonists, we have recently reported a series of compound 2 (Apogossypol) derivatives, resulting in the chiral compound 4 (8r). We report here the synthesis and evaluation on its optically pure individual isomers. Compound 11 (BI-97C1), the most potent diastereoisomer of compound 4, inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 0.31, 0.32, 0.20, and 0.62 microM, respectively. The compound also potently inhibits cell growth of human prostate cancer, lung cancer, and lymphoma cell lines with EC(50) values of 0.13, 0.56, and 0.049 microM, respectively, and shows little cytotoxicity against bax(-/-)bak(-/-) cells. Compound 11 displays in vivo efficacy in transgenic mice models and also demonstrated superior single-agent antitumor efficacy in a prostate cancer mouse xenograft model. Therefore, compound 11 represents a potential drug lead for the development of novel apoptosis-based therapies against cancer.

Download full-text

Full-text

Available from: William Placzek, Feb 10, 2014
1 Follower
 · 
214 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating prostate cancer (PC). We previously constructed a CRCA, Cancer Terminator Virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 07/2013; 229(1). DOI:10.1002/jcp.24408 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to available therapeutic agents has been a common problem thwarting progress in treatment of castrate-resistant and metastatic prostate cancer (PCa). Overexpression of the Bcl-2 family members, including Mcl-1, in PCa cells is known to inhibit intracellular mitochondrial-dependent apoptosis. Here we report the development of a novel transgenic mouse model that spontaneously develops prostatic intraepithelial neoplasia and adenocarcinoma by the inducible, conditional knockout of transforming growth factor β receptor type II in stromal fibroblastic cells (Tgfbr2(ColTKO)). The Tgfbr2(ColTKO) prostate epithelia demonstrated down-regulation of luminal and basal differentiation markers, as well as Pten expression and up-regulation of Mcl-1. However, unlike in men, Tgfbr2(ColTKO) prostates exhibited no regression acutely after castration. The administration of Sabutoclax (BI-97C1), a pan-active Bcl-2 protein family antagonist mediated apoptosis in castrate-resistant PCa cells of Tgfbr2(ColTKO) mice and human subcutaneous, orthotopic, and intratibial xenograft PCa models. Interestingly, Sabutoclax had little apoptotic effect on benign prostate tissue in Tgfbr2(ColTKO) and wild-type mice. Sabutoclax was able to block c-Met activation, a critical axis in PCa metastatic progression. Further, Sabutoclax synergistically sensitized PC-3 cells to the cytotoxic effects of docetaxel (Taxotere). Together, these data suggest that Sabutoclax inhibits castrate-resistant PCa alone at the primary and bone metastatic site as well as support sensitivity to docetaxel treatment.
    Neoplasia (New York, N.Y.) 07/2012; 14(7):656-65. DOI:10.1593/neo.12640 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our focus in the past several years has been on the identification of novel and effective pan-Bcl-2 antagonists. We have recently reported a series of Apogossypolone (ApoG2) derivatives, resulting in the chiral compound (±) BI97D6. We report here the synthesis and evaluation on its optically pure (-) and (+) atropisomers. Compound (-) BI97D6 potently inhibits the binding of BH3 peptides to Bcl-X(L), Bcl-2, Mcl-1, and Bfl-1 with IC(50) values of 76 ± 5, 31 ± 2, 25 ± 8, and 122 ± 28 nM, respectively. In a cellular assay, compound (-) BI97D6 effectively inhibits cell growth in the PC-3 human prostate cancer and H23 human lung cancer cell lines with EC(50) values of 0.22 ± 0.08 and 0.14 ± 0.02 μM, respectively. Similarly, compound (-) BI97D6 effectively induces apoptosis in the BP3 human lymphoma cell line in a dose-dependent manner. The compound also shows little cytotoxicity against bax(-/-)/bak(-/-) cells, suggesting that it kills cancers cells predominantly via a Bcl-2 pathway. Moreover, compound (-) BI97D6 displays in vivo efficacy in both a Bcl-2-transgenic mouse model and in a prostate cancer xenograft model in mice. Therefore, compound (-) BI97D6 represents a promising drug lead for the development of novel apoptosis-based therapies for cancer.
    Frontiers in Oncology 01/2011; 1:28. DOI:10.3389/fonc.2011.00028