Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome

Medizinische Klinik Innenstadt, University of Munich, Ziemssenstr. 1, D-80336 Munich, Germany.
Gut (Impact Factor: 13.32). 05/2010; 59(9):1192-9. DOI: 10.1136/gut.2009.197822
Source: PubMed

ABSTRACT The proinflammatory cytokines interleukin 1beta (IL-1beta) and IL-18 are central players in the pathogenesis of inflammatory bowel disease (IBD). In response to a variety of microbial components and crystalline substances, both cytokines are processed via the caspase-1-activating multiprotein complex, the NLRP3 inflammasome. Here, the role of the NLRP3 inflammasome in experimental colitis induced by dextran sodium sulfate (DSS) was examined.
IL-1beta production in response to DSS was studied in macrophages of wild-type, caspase-1(-/-), NLRP3(-/-), ASC(-/-), cathepsin B(-/-) or cathepsin L(-/-) mice. Colitis was induced in C57BL/6 and NLRP3(-/-) mice by oral DSS administration. A clinical disease activity score was evaluated daily. Histological colitis severity and expression of cytokines were determined in colonic tissue.
Macrophages incubated with DSS in vitro secreted high levels of IL-1beta in a caspase-1-dependent manner. IL-1beta secretion was abrogated in macrophages lacking NLRP3, ASC or caspase-1, indicating that DSS activates caspase-1 via the NLRP3 inflammasome. Moreover, IL-1beta secretion was dependent on phagocytosis, lysosomal maturation, cathepsin B and L, and reactive oxygen species (ROS). After oral administration of DSS, NLRP3(-/-) mice developed a less severe colitis than wild-type mice and produced lower levels of proinflammatory cytokines in colonic tissue. Pharmacological inhibition of caspase-1 with pralnacasan achieved a level of mucosal protection comparable with NLRP3 deficiency.
The NLRP3 inflammasome was identified as a critical mechanism of intestinal inflammation in the DSS colitis model. The NLRP3 inflammasome may serve as a potential target for the development of novel therapeutics for patients with IBD.

  • [Show abstract] [Hide abstract]
    ABSTRACT: : Inflammasomes are multiprotein complexes that process procytokines into mature forms of interleukin 1β and interleukin 18 and induce pyroptotic cell death. Evidence linking NLRP3, NLRC4, and NLRP6 inflammasomes to intestinal inflammation is reviewed to provide a basis to understand how the innate immune system discriminates pathogenic bacteria from commensal bacteria and shapes microbial ecology. Inflammasomes have a direct and important role limiting colitis by directing effective immune responses against pathogenic bacterial infections in the intestine. Chronic granulomatous disease is presented to reveal a contrasting proinflammatory effect of inflammasomes. This pathogenic effect is unmasked in a state of immunodeficiency where bacterial growth is poorly controlled increasing inflammasome activity. The role of inflammasomes in inflammation associated with Crohn's disease and ulcerative colitis is discussed. Finally, mechanistic studies linking genetic polymorphisms in ATG16L and NOD2 to inflammasome activation provide a basis for new hypotheses to explain how genetic polymorphism associated with Crohn's disease modulate intestinal inflammation. A deeper understanding of the role of inflammasomes in intestinal inflammation is expected to identify new ways of treating inflammatory bowel disease.
    Inflammatory Bowel Diseases 01/2015; 21(1):173-181. DOI:10.1097/MIB.0000000000000230 · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complexity of a common inflammatory disease is influenced by multiple genetic and environmental factors contributing to the susceptibility of disease. Studies have reported that these exogenous and endogenous components may perturb the balance of innate immune response by activating the NLRP3 inflammasome. The multimeric NLRP3 complex results in the caspase-1 activation and the release of potent inflammatory cytokines, like IL-1β. Several studies have been performed on the association of the genetic alterations in genes encoding NLRP3 and CARD8 with the complex diseases with inflammatory background, like inflammatory bowel disease, cardiovascular diseases, rheumatoid arthritis, and type 1 diabetes. The aim of the present review is therefore to summarize the literature regarding genetic alterations in these genes and their association with health and disease.
    Mediators of Inflammation 02/2015; 2015:10. DOI:10.1155/2015/846782 · 2.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The innate immune system is a key factor in understanding the pathogenesis of inflammatory bowel disease (IBD) and in the hopes of improving its treatment. NOD2, a pattern recognition receptor, was one of the first major susceptibility genes identified in Crohn's disease (CD). This discovery has been followed by genome-wide association studies that have identified other genes involved in innate immune responses. Most notably, polymorphisms in the interleukin (IL)-23 receptor have also been linked to IBD - both CD and ulcerative colitis. At the core of the innate immune defects associated with IBD is a lack of generating a robust response to control invasive commensal or pathogenic bacteria. The defect sometimes lies in a failure of the epithelium to express antimicrobial peptides or in defective control of intracellular bacteria by phagocytic cells such as dendritic cells, macrophages, or neutrophils. The recent identification of innate lymphoid cells that express the IL-23 receptor and generate both proinflammatory and protective or regulatory responses to commensal or pathogenic bacteria provides another layer of complexity to the interplay of host protection and dysregulated inflammation. Although inhibition of tumor necrosis factor has been highly successful as a strategy in treating IBD, we must better understand the nuanced role of other innate cytokines before we may incorporate these in the treatment of IBD.
    Scandinavian Journal of Gastroenterology 01/2015; 50(1):24-33. DOI:10.3109/00365521.2014.966321 · 2.33 Impact Factor