Obese children show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control. Int J Obes

Department of Preventive Medicine, Hoglund Brain Imaging Center, The University of Kansas Medical Center, Kansas City, KS, USA.
International journal of obesity (2005) (Impact Factor: 5). 05/2010; 34(10):1494-500. DOI: 10.1038/ijo.2010.84
Source: PubMed


To investigate the neural mechanisms of food motivation in children and adolescents, and examine brain activation differences between healthy weight (HW) and obese participants.
Ten HW children (ages 11-16; BMI < 85%ile) and 10 obese children (ages 10-17; BMI >95%ile) matched for age, gender and years of education.
Functional magnetic resonance imaging (fMRI) scans were conducted twice: when participants were hungry (pre-meal) and immediately after a standardized meal (post-meal). During the fMRI scans, the participants passively viewed blocked images of food, non-food (animals) and blurred baseline control.
Both groups of children showed brain activation to food images in the limbic and paralimbic regions (PFC/OFC). The obese group showed significantly greater activation to food pictures in the PFC (pre-meal) and OFC (post-meal) than the HW group. In addition, the obese group showed less post-meal reduction of activation (vs pre-meal) in the PFC, limbic and the reward-processing regions, including the nucleus accumbens.
Limbic and paralimbic activation in high food motivation states was noted in both groups of participants. However, obese children were hyper-responsive to food stimuli as compared with HW children. In addition, unlike HW children, brain activations in response to food stimuli in obese children failed to diminish significantly after eating. This study provides initial evidence that obesity, even among children, is associated with abnormalities in neural networks involved in food motivation, and that the origins of neural circuitry dysfunction associated with obesity may begin early in life.

Download full-text


Available from: Cary R Savage, Dec 16, 2013
85 Reads
  • Source
    • "The extension of such content to the study of appetitive behaviors here and elsewhere (Gearhardt et al. 2013) may serve to better understand the full complement of activations associated with healthy and unhealthy eating habits. Across all subjects, food commercials more strongly activated the OFC, insula, and NAcc, regions consistently activated in reward processing and encoding valuation (Rothemund et al. 2007; Cloutier et al. 2008; Stoeckel et al. 2008; Bruce et al. 2010; Stice et al. 2011; Wagner et al. 2011; Demos et al. 2012; Dimitropoulos et al. 2012; Simmons, Rapuano, Ingeholm, et al. 2013). This finding supports our hypothesis that food commercials engage reward-related regions of the brain more strongly than non-food commercials and is consistent with previous studies (Gearhardt et al. 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of adolescent obesity has increased dramatically over the past 3 decades, and research has documented that the number of television shows viewed during childhood is associated with greater risk for obesity. In particular, considerable evidence suggests that exposure to food marketing promotes eating habits that contribute to obesity. The present study examines neural responses to dynamic food commercials in overweight and healthy-weight adolescents using functional magnetic resonance imaging (fMRI). Compared with non-food commercials, food commercials more strongly engaged regions involved in attention and saliency detection (occipital lobe, precuneus, superior temporal gyri, and right insula) and in processing rewards [left and right nucleus accumbens (NAcc) and left orbitofrontal cortex (OFC)]. Activity in the left OFC and right insula further correlated with subjects' percent body fat at the time of the scan. Interestingly, this reward-related activity to food commercials was accompanied by the additional recruitment of mouth-specific somatosensory-motor cortices-a finding that suggests the intriguing possibility that higher-adiposity adolescents mentally simulate eating behaviors and offers a potential neural mechanism for the formation and reinforcement of unhealthy eating habits that may hamper an individual's ability lose weight later in life. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail:
    Cerebral Cortex 05/2015; DOI:10.1093/cercor/bhv097 · 8.67 Impact Factor
  • Source
    • "In previous functional MRI (fMRI) studies, it was shown that obese subjects show hyperactivation to food pictures in brain networks linked to motivation, reward and cognitive control [13], [14] and that fMRI hyperactivation to high-calorie food pictures predicts weight gain [15]. In the present study, fMRI was used to test the hypothesis that treatment with ID modifies activation in appetite regulating brain regions in response to visual food stimuli compared to regular treatment with Neutral Protamine Hagedorn insulin (NPH). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. NCT00626080.
    PLoS ONE 04/2014; 9(4):e94483. DOI:10.1371/journal.pone.0094483 · 3.23 Impact Factor
  • Source
    • "In obese children, hyperactivity of the limbic and paralimbic brain areas was observed during presentation of food stimuli in the hungry state. These areas remain activated after a meal and after the presentation of food stimuli [60]. It is not clear whether and how processing of food stimuli plays a role in weight loss treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity in adults and children is increasing worldwide at alarming rates. Obese children and adolescents are likely to become obese adults with increased risk of a number of comorbidities. In addition to preventing the development of obesity at young age, it is necessary to individualize the therapy of already obese children and adolescents in order to increase the likelihood of weight loss and maintenance. Therefore, the aim of this study is to identify predictors which play a significant role in successful weight loss and weight loss maintenance in children and adolescents. Over a one year period, 60 obese children and adolescents between 9 to 17 years of age shall be recruited at an inpatient children rehabilitation facility in Germany. They will be investigated twice within a few days following admission and prior to discharge. The study will be an integrated component of an established inpatient weight-loss and in part psychosomatic therapy. The collected data can be grouped into four clusters: 1) demographic, sociometric and psychometric data, 2) objective and subjective parameters of body condition, 3) autonomic nervous system regulated functions and 4) objective and subjective parameters for eating behavior. Primary outcome is the change of the body mass index standard deviation score (BMI-SDS). In order to evaluate the data appropriately, all examinations will be also conducted in a normal-weight reference group, matched for age and gender. For some of the collected parameters the time span between measures may be too short. Therefore, a 6 months, 1 year and 2 year follow-up will be performed for evaluating the different predictors and their influence in regard to a successful intervention. Further middle- and long-term follow-up studies are planned. The study protocol was approved by the Ethics Committee of the University Hospital Tübingen, Germany. This study is registered at the German Clinical Trials Register (DRKS) with the clinical trial number DRKS00005122.
    Journal of Eating Disorders 03/2014; 2(1):7. DOI:10.1186/2050-2974-2-7
Show more