Behavioural phase change in the Australian plague locust, Chortoicetes terminifera, is triggered by tactile stimulation of the antennae.

School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
Journal of insect physiology (Impact Factor: 2.5). 05/2010; 56(8):937-42. DOI: 10.1016/j.jinsphys.2010.04.023
Source: PubMed

ABSTRACT Density-dependent phase polyphenism is a defining characteristic of the paraphyletic group of acridid grasshoppers known as locusts. The cues and mechanisms associated with crowding that induce behavioural gregarization are best understood in the desert locust, Schistocerca gregaria, and involve a combination of sensory inputs from the head (visual and olfactory) and mechanostimulation of the hind legs, acting via a transient increase in serotonin in the thoracic ganglia. Since behavioural gregarization has apparently arisen independently multiple times within the Acrididae, the important question arises as to whether the same mechanisms have been recruited each time. Here we explored the roles of visual, olfactory and tactile stimulation in the induction of behavioural gregarization in the Australian plague locust, Chortoicetes terminifera. We show that the primary gregarizing input is tactile stimulation of the antennae, with no evidence for an effect of visual and olfactory stimulation or tactile stimulation of the hind legs. Our results show that convergent behavioural responses to crowding have evolved employing different sites of sensory input in the Australian plague locust and the desert locust.


Available from: Gregory Sword, Jun 15, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cockroaches, like many other animal species, form aggregations in which social stimuli from conspecifics can alter the physiology, morphology, or behavior of individuals. In adult females of the German cockroach, Blattella germanica, social isolation slows oocyte development, sexual maturation, and sexual receptivity, whereas social interactions as minimal as between just two females accelerate reproduction; however, the sensory modalities and pathways that mediate these physiological and behavioral changes are poorly understood. We explored the roles of visual, olfactory, and tactile cues in the reproductive physiology of German cockroach females, and whether their effects are species-specific and related to circadian time. Our results show that tactile cues are the primary sensory input associated with social conditions-with no evidence for involvement of the visual and olfactory systems-and that the antennae play an important role in the reception of these tactile cues. This conclusion is supported by the observation that interactions with other insect species of similar or larger size and with similar antennal morphology also stimulate oocyte development in B. germanica. Social facilitation of reproduction is expected to be influenced by the circadian timing system, as females engage in more social contact during the day when they shelter in aggregations with conspecifics. Surprisingly, however, the female's reproductive rate was unresponsive to social interactions during the photophase, whereas social interactions as short as two hours during the scotophase were sufficient to induce faster reproduction.We discuss the adaptive significance of these sensory-neuroendocrine responses in the German cockroach.
    PLoS ONE 02/2013; 8(2):e55678. DOI:10.1371/journal.pone.0055678 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic plasticity allows animals to modify their behavior, physiology, and morphology to adapt to environmental change. The global pest, the desert locust, shows two extreme phenotypes; a solitarious phase that is relatively harmless and a gregarious phase that forms swarms and causes extensive agricultural and economic damage. In the field, environmental conditions can drive isolated animals into crowded populations and previous studies have identified the biogenic amine serotonin as a key determinant of this transition. Here we take an integrated approach to investigate the neurochemical, physiological, and behavioral correlates defined by a laboratory based paradigm that mimics facets of swarm break down as gregarious locusts become isolated. Following isolation there was an increased propensity of locusts to avoid conspecifics, and show a reduced locomotion. Changes in choice behavior occurred within 1 h of isolation although isolation-related changes progressed with increased isolation time. Isolation was accompanied by changes in the levels of the biogenic amines dopamine, octopamine, and serotonin within the CNS within 1 h. Dopamine levels were higher in isolated animals and we focused on the role played by this transmitter in synaptic changes that may underpin solitarization. Dopamine reduced synaptic efficacy at a key central synapse between campaniform sensilla (CS) and a fast extensor tibiae motor neuron that is involved in limb movement. We also show that dopamine injection into the haemocoel was sufficient to induce solitarious-like behavior in otherwise gregarious locusts. Further, injection of a dopamine antagonist, fluphenazine, into isolated locusts induced gregarious-like behavior. This highlights that dopaminergic modulation plays an important role in the plasticity underpinning phase transition and sets a context to deepen the understanding of the complementary role that distinct neuromodulators play in polyphenism in locusts.
    11/2014; 8:371. DOI:10.3389/fnbeh.2014.00371
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tactile stimuli provide animals with important information about the environment, including physical features such as obstacles, and biologically relevant cues related to food, mates, hosts and predators. The antennae, the principal sensory organs of insects, house an array of sensory receptors for olfaction, gustation, audition, nociception, balance, stability, graviception, static electric fields, and thermo-, hygro- and mechanoreception. The antennae, being the anteriormost sensory appendages, play a prominent role in social interactions with conspecifics that involve primarily chemosensory and tactile stimuli. In the German cockroach (Blattella germanica) antennal contact during social interactions modulates brain-regulated juvenile hormone production, ultimately accelerating the reproductive rate in females. The primary sensory modality mediating this social facilitation of reproduction is antennal mechanoreception. We investigated the key elements, or stimulus features, of antennal contact that socially facilitate reproduction in B. germanica females. Using motor-driven antenna mimics, we assessed the physiological responses of females to artificial tactile stimulation. Our results indicate that tactile stimulation with artificial materials, some deviating significantly from the native antennal morphology, can facilitate female reproduction. However, none of the artificial stimuli matched the effects of social interactions with a conspecific female.
    Proceedings of the Royal Society B: Biological Sciences 03/2014; 281(1783):20140325. DOI:10.1098/rspb.2014.0325 · 5.29 Impact Factor