Article

Partitioning of copy-number genotypes in pedigrees.

Montreal Heart Institute Research Center, Montréal, Canada.
BMC Bioinformatics (Impact Factor: 3.02). 01/2010; 11:226. DOI: 10.1186/1471-2105-11-226
Source: PubMed

ABSTRACT Copy number variations (CNVs) and polymorphisms (CNPs) have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data.
We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype.
CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

0 Bookmarks
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Ventricular septal defect (VSD) is the most common congenital heart disease (CHD). Genome-wide linkage analysis revealed a potential CHD susceptibility locus in the homeodomain leucine zipper-encoding (HOMEZ) gene in a South Indian population. The present study aimed to identify potential pathogenic mutations for HOMEZ and to provide insights into the etiology of isolated VSD in the Chinese population. Methods: Case-control mutational analysis was performed in 400 patients with isolated VSD and 400 healthy controls. Protein-coding exton of HOMEZ and their flanking sequences were amplified by polymerase chain reaction and sequenced on an ABI3730 Automated Sequencer. CLC workbench software was used to compare the conservatism of the HOMEZ protein with other multiple species. The ExPASy-ProtScale online tool was used to predicate the alignment of the hydrophobic features. Results: Two novel heterozygous missense mutations (c.116 C>T; c. 630T>A) were identified in HOMEZ gene exon-2. The two mutations lead to alanine to valine substitution at position 39 and serine to arginine at position 210, which are highly conserved among many species. The hydropathicity of the valine and arginine residue at the position 39 and 210 were significantly different from the wild type. Conclusions: We have identified two novel heterozygous missense mutations in HOMEZ gene exon-2 in isolated VSD patients in the Chinese population and have found that these two mutations resulted in alteration of the hydropathicity of the HOMEZ protein. Therefore, the two missense mutations of the HOMEZ gene are directly linked with the etiology of isolated VSD in the Chinese population.
    Genetic Testing and Molecular Biomarkers 04/2013; · 1.44 Impact Factor

Full-text (2 Sources)

Download
2 Downloads
Available from
Dec 12, 2014