Article

Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av, Universidad 2001, Col, Chamilpa, Cuernavaca, Morelos, 62210, México.
Microbial Cell Factories (Impact Factor: 3.31). 01/2010; DOI: 10.1186/1475-2859-9-21
Source: DOAJ

ABSTRACT Abstract

Background

Shikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK , aroL , pykF or pykA and the expression of plasmid-coded genes aroG fbr, tktA, aroB and aroE , on SA synthesis.

Results

Batch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate ( μ ) and specific glucose consumption rate ( qs ), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK - aroL - mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ , qs , SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol).

Conclusions

The effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL , and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli , with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Efficient production of shikimic acid (SA) in Escherichia coli has been achieved by modifying key genes of the central carbon metabolism and SA pathway, resulting in overproducing strains grown in batch- or fed-batch-fermentor cultures using a complex broth including glucose and yeast extract (YE). In this study, we performed a GTA to identify those genes significantly upregulated in an engineered E. coli strain, PB12.SA22, in mid EXP (5 h), early STA (STA1, 9 h), and late SAT (STA2, 44 h) phases, grown in complex fermentation broth in batch-fermentor cultures. Growth of E. coli PB12.SA22 in complex fermentation broth for SA production resulted in an EXP growth during the first 9 h of cultivation depending of supernatant available aromatic amino acids provided by YE because, when tryptophan was totally consumed, cells entered into a second, low-growth phase (even in the presence of glucose) until 26 h of cultivation. At this point, glucose was completely consumed but SA production continued until the end of the fermentation (50 h) achieving the highest accumulation (7.63 g/L of SA). GTA between EXP/STA1, EXP/STA2 and STA1/STA2 comparisons showed no significant differences in the regulation of genes encoding enzymes of central carbon metabolism as in SA pathway, but those genes encoding enzymes involved in sugar, amino acid, nucleotide/nucleoside, iron and sulfur transport; amino acid catabolism and biosynthesis; nucleotide/nucleoside salvage; acid stress response and modification of IM were upregulated between comparisons. GTA during SA production in batch-fermentor cultures of strain PB12.SA22 grown in complex fermentation broth during the EXP, STA1 and STA2 phases was studied. Significantly, upregulated genes during the EXP and STA1 phases were associated with transport, amino acid catabolism, biosynthesis, and nucleotide/nucleoside salvage. In STA2, upregulation of genes encoding transporters and enzymes involved in the synthesis and catabolism of Arg suggests that this amino acid could have a key role in the fuelling of carbon toward SA synthesis, whereas upregulation of genes involved in pH stress response, such as membrane modifications, suggests a possible response to environmental conditions imposed on the cell at the end of the fermentation.
    Microbial Cell Factories 02/2014; 13(1):28. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shikimic acid (SA) is a key chiral starting molecule for the synthesis of the neuramidase inhibitor GS4104 against viral influenza. Microbial production of SA has been extensively investigated in Escherichia coli, and to a less extent in Bacillus subtilis. However, metabolic flux of the high SA-producing strains has not been explored. In this study, we constructed with genetic manipulation and further determined metabolic flux with 13C-labeling test of high SA-producing B. subtilis strains. B. subtilis 1A474 had a mutation in SA kinase gene (aroI) and accumulated 1.5 g/L of SA. Overexpression of plasmid-encoded aroA, aroB, aroC or aroD in B. subtilis revealed that aroD had the most significantly positive effects on SA production. Simultaneous overexpression of genes for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroA) and SA dehydrogenase (aroD) in B. subtilis BSSA47407 resulted in SA production of 3.2 g/L. 13C-Metabolic flux assay (MFA) on the two strains 474a and BSSA/pSAAroA/pDGSAAroD indicated the carbon flux from glucose to SA increased to 4.6% in BSSA/pSAAroA/pDGSAAroD from 1.9% in strain 474a. The carbon flux through tricarboxylic acid cycle significantly reduced, while responses of the pentose phosphate pathway and the glycolysis to high SA production were rather weak, in the strain BSSA/pSAAroA/pDGSAAroD. Based on the results from MFA, two potential targets for further optimization of SA production were identified. Experiments on genetic deletion of phosphoenoylpyruvate kinase gene confirmed its positive influence on SA production, while the overexpression of the transketolase gene did not lead to increase in SA production. Of the genes involved in shikimate pathway in B. subtilis, aroD exerted most significant influence on SA accumulation. Overexpression of plasmid-encoded aroA and aroD doubled SA production than its parent strain. MFA revealed metabolic flux redistribution among phosphate pentose pathway, glycolysis, TCA cycle in the low and high SA-producing B. subtilis strains. The high SA producing strain BSSA/pSAAroA/pDGSAAroD had increased carbon flux into shikimate pathway and reduced flux into TCA cycle.
    Microbial Cell Factories 03/2014; 13(1):40. · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Biotransformation of quinic acid to shikimic acid was attempted using whole cells of Bacillus megaterium as a biocatalyst. Results: Physico-chemical parameters such as temperature (37°C), pH (7.0), agitation (200 rpm), substrate (5 mM) and cell mass concentrations (200 kg/m 3) and reaction time (3 h) were found optimum to enhance the bioconversion. Maximum conversion (89%) of quinic acid to shikimic acid was achieved using the above optimized parameters. Shikimic acid was extracted from the reaction mixture by a pH-dependent method and maximum recovery (76%) was obtained with petroleum ether. Conclusions: Biotransformation of quinic acid to shikimic acid seems to be a better alternative over its fermentative production. Keywords: Shikimic acid; Quinic acid; Biotransformation
    Bioresources and Bioprocessing. 08/2014; 1:7.

Full-text (4 Sources)

View
51 Downloads
Available from
May 27, 2014