Article

Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av, Universidad 2001, Col, Chamilpa, Cuernavaca, Morelos, 62210, México.
Microbial Cell Factories (Impact Factor: 4.25). 01/2010; 9(1). DOI: 10.1186/1475-2859-9-21
Source: DOAJ

ABSTRACT Abstract

Background

Shikimic acid (SA) is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12) lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS-) but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK , aroL , pykF or pykA and the expression of plasmid-coded genes aroG fbr, tktA, aroB and aroE , on SA synthesis.

Results

Batch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate ( μ ) and specific glucose consumption rate ( qs ), but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK - aroL - mutant expressing plasmid-coded genes (strain PB12.SA22) accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY) of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ , qs , SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol).

Conclusions

The effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL , and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS- background. Results indicate differential roles of Pyk isoenzymes on growth and aromatic compound production. This study demonstrated for the first time the simultaneous inactivation of PTS and pykF as part of a strategy to improve SA production and its aromatic precursors in E. coli , with a resulting high yield of aromatic compounds on glucose of 0.5 mol/mol.

Download full-text

Full-text

Available from: Ramon De Anda, Jul 06, 2015
0 Followers
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoenolpyruvate (PEP) is a precursor involved in the biosynthesis of aromatics and other valuable compounds in Escherichia coli. The PEP:carbohydrate phosphotransferase system (PTS) is the major glucose transport system and the largest PEP consumer. To increase intracellular PEP availability for aromatics production purposes, mutant strains of E. coli JM101 devoid of the ptsHIcrr operon (PB11 strain) have been previously generated. In this derivative, transport and growth rate on glucose decreased significantly. A laboratory evolved strain derived from PB11 that partially recovered its growth capacity on glucose was named PB12. In the present study, we blocked carbon skeletons interchange between PEP and pyruvate (PYR) in these ptsHIcrr− strains by deleting the pykA, pykF, and ppsA genes. The PB11 pykAF− ppsA− strain exhibited no growth on glucose or acetate alone, but it was viable when both substrates were consumed simultaneously. In contrast, the PB12 pykAF− ppsA− strain displayed a low growth rate on glucose or acetate alone, but in the mixture, growth was significantly improved. RT-qPCR expression analysis of PB11 pykAF− ppsA− growing with both carbon sources showed a downregulation of all central metabolic pathways compared with its parental PB11 strain. Under the same conditions, transcription of most of the genes in PB12 pykAF− ppsA− did not change, and few like aceBAK, sfcA, and poxB were overexpressed compared with PB12. We explored the aromatics production capabilities of both ptsHIcrr− pykAF− ppsA− strains and the engineered PB12 pykAF− ppsA− tyrR− pheAev2+/pJLBaroGfbrtktA enhanced the yield of aromatic compounds when coutilizing glucose and acetate compared with the control strain PB12 tyrR− pheAev2+/pJLBaroGfbrtktA. Biotechnol. Bioeng. 2014;111: 1150–1160. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
    Biotechnology and Bioengineering 06/2014; 111(6). DOI:10.1002/bit.25177 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The glycolytic intermediate phosphoenolpyruvate (PEP) is a precursor of several cellular components, including various aromatic compounds. Modifications to the PEP node such as PEP:sugar phosphotransferase system (PTS) or pyruvate kinase inactivation have been shown to have a positive effect on aromatics production capacity in Escherichia coli and Bacillus subtilis. In this study, pyruvate kinase and PTS-deficient B. subtilis strains were employed for the construction of derivatives lacking shikimate kinase activity that accumulate two industrially valuable chemicals, the intermediates of the common aromatic pathway, shikimic and dehydroshikimic acids. The pyruvate kinase-deficient strain (CLC6-PYKA) showed the best production parameters under resting-cell conditions. Compared to the PTS-deficient strain, the shikimic and dehydroshikimic acids specific production rates for CLC6-PYKA were 1.8- and 1.7-fold higher, respectively. A batch fermentor culture using complex media supplemented with 83 g/l of glucose was developed with strain CLC6-PYKA, where final titers of 4.67 g/l (shikimic acid) and 6.2 g/l (dehydroshikimic acid) were produced after 42 h. © 2013 S. Karger AG, Basel.
    Journal of Molecular Microbiology and Biotechnology 10/2013; 24(1):37-45. DOI:10.1159/000355264 · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Escherichia coli, the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) is responsible for the transport and phosphorylation of sugars, such as glucose. PTS activity has a crucial role in the global signaling system that controls the preferential consumption of glucose over other carbon sources. When the cell is exposed to carbohydrate mixtures, the PTS prevents the expression of catabolic genes and activity of non-PTS sugars transport systems by carbon catabolite repression (CCR). This process defines some metabolic and physiological constraints that must be considered during the development of production strains. In this review, we summarize the importance of the PTS in controlling and influencing both PTS and non-PTS sugar transport processes as well as the mechanisms of transcriptional control involved in the expression of catabolic genes of non-PTS sugars in E. coli. We discuss three main approaches applied efficiently to avoid these constraints resulting in obtaining PTS(-) glc(+) mutants useful for production purposes: (1) adaptive selection in chemostat culture system of PTS(-) mutants, resulting in the selection of strains that recovered the ability to grow in glucose, along with the simultaneous consumption of two carbon sources and reduced acetate production; (2) replacement in PTS(-) strains of the native GalP promoter by strong promoters or the substitution of this permease by recombinant glucose transport system; and (3) enhancement of Crp (crp+) in mgsA, pgi, and ptsG mutants, resulting in derivative strains that abolished CCR, allowing the simultaneous consumption of mixtures of sugars with low acetate production.
    Applied Microbiology and Biotechnology 05/2012; 94(6):1483-94. DOI:10.1007/s00253-012-4101-5 · 3.81 Impact Factor