Análisis de la absorción de hidrógeno y de su influencia en el comportamiento mecánico de cinco aleaciones férreas

Revista de Metalurgia 01/2008;
Source: DOAJ

ABSTRACT A study of the influence of hydrogen on the mechanical behaviour of five iron alloys with different carbon state, morphology and content (as spheroidal or lamellar graphite or combined as CFe3) is described here. Experimental observations from tensile (carried out at different crosshead speeds), Charpy impact resistance, hardness, fracture toughness tests and fractographic analysis show that internal or dissolved hydrogen, apart from producing a significant loss of ductility, hardens steels and softens cast irons. The results also provide convincing evidence of the important role that the strain rate plays in the mechanism of hydrogen induced cracking. Additionally, glow discharge optical emission spectroscopy (GDOES) technique is used to evaluate the concentration of hydrogen that has been absorbed by the samples as a function of depth and time. It can be deduced from the innovative use of this technique not only that diffusivity of hydrogen in ductile cast irons is greater than in steels or grey cast irons, but also that hydrogen interacts with different trapping sites.El objetivo de este trabajo es el estudio de la influencia del hidrógeno en el comportamiento mecánico de cinco aleaciones férreas con distinto contenido, estado y morfología de carbono (grafito libre; esferoidal y laminar y combinado como CFe3). Los resultados experimentales extraídos de los ensayos de tracción llevados a cabo a diferentes velocidades de desplazamiento entre mordazas, flexión por choque sobre probeta Charpy, tenacidad de fractura y del análisis fractográfico indican que el hidrógeno interno o disuelto, además de producir una importante pérdida de ductilidad, provoca un endurecimiento en los aceros y un ablandamiento en las fundiciones. Estos resultados también proporcionan una evidencia del importante papel que juega la velocidad de deformación en el mecanismo de daño inducido por hidrógeno. Asimismo, se ha utilizado espectroscopía óptica de descarga luminiscente (EODL) para evaluar la concentración de hidrógeno absorbido por las muestras en función del tiempo y de la profundidad. Se puede deducir del innovador uso de esta técnica no sólo que la difusividad del hidrógeno en las fundiciones dúctiles es mayor que en los aceros o que en la fundición gris, sino también que el hidrógeno interacciona con distintos lugares de atrapamiento.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel procedure for hydrogen charging and studying the Internal Hydrogen Embrittlement (IHE) of steels is described here. A cylindrical notched tensile sample with an extended end is employed for hydrogen charging. The extended portion of the sample forms the cathode in an alkaline bath and a constant uni-axial tensile load is applied during hydrogen charging. The stress gradient set up by the notch, which is not in contact with the electrolyte, enhances the hydrogen concentration at various trapping sites of the matrix beyond the solubility limit. Subsequent to charging, the specimen is kept under the same load as that during charging, for another 24 h to stabilize the population of hydrogen within the specimen matrix. At the end of this stage, the specimen is tensile tested to failure at room temperature. Two different steels namely maraging and mild steels have been chosen to study the effect of hydrogen ingress on mechanical properties. While an increase in tangent modulus (linear portion of the stress–strain diagram), yield strength, work hardening rate and ultimate tensile stress (UTS) has been observed on hydrogenation, a decrease in total elongation has been noticed for both the steels studied. Fractographic investigation has revealed that the fracture mode is predominantly ductile dimple (failure by micro-void coalescence) in both the materials and that the hydrogen reduces the size of the dimples. The observations of this investigation are significant in two respects: firstly, it demonstrates the efficacy of a hydrogen charging method for steels which can introduce hydrogen to a level much higher than its solubility limit and secondly, it reports for the first time enhancement of modulus and work hardening by hydrogen charging. These observations have been rationalized on the basis of current understanding on the effect of hydrogen on plastic properties and hypothesis of the models of IHE. It is suggested that the trapping of hydrogen by dislocations and other structural features of the matrix and the mutual interactions of their strain fields can account for the observed effects on yield strength, tangent modulus, work hardening rate, UTS and ductility.
    Materials Science and Engineering A 01/2000; · 2.11 Impact Factor