The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

Source: OAI

ABSTRACT To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production. Yes Yes

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the completion of the bovine sequencing projects, a substantial number of genetic variations such as single nucleotide polymorphisms have become available across the cattle genome. Recently, cataloguing such genetic variations has been accelerated using massively parallel sequencing technology. However, most of the recent studies have been concentrated on European Bos taurus cattle breeds, resulting in a severe lack of knowledge for valuable native cattle genetic resources worldwide. Here, we present the first whole-genome sequencing results for an endangered Korean native cattle breed, Chikso, using the Illumina HiSeq 2,000 sequencing platform. The genome of a Chikso bull was sequenced to approximately 25.3-fold coverage with 98.8% of the bovine reference genome sequence (UMD 3.1) covered. In total, 5,874,026 single nucleotide polymorphisms and 551,363 insertion/deletions were identified across all 29 autosomes and the X-chromosome, of which 45% and 75% were previously unknown, respectively. Most of the variations (92.7% of single nucleotide polymorphisms and 92.9% of insertion/deletions) were located in intergenic and intron regions. A total of 16,273 single nucleotide polymorphisms causing missense mutations were detected in 7,111 genes throughout the genome, which could potentially contribute to variation in economically important traits in Chikso. This study provides a valuable resource for further investigations of the genetic mechanisms underlying traits of interest in cattle, and for the development of improved genomics-based breeding tools.
    Molecules and Cells 08/2013; · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population. Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group. Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships. Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.
    Genetics Selection Evolution 02/2014; 46(1):17. · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Domestication traits in animal and plant species distinguishing them from closely related wild species are discussed. Data are given on what such traits are found not only at the phenotypic level but also in polymorphism of electrophoretic variants of protein groups with a different biochemical function, DNA fragments flanked by inverted short repeats. The assumption that retrovirus infections can participate in the formation of domestication traits is substantiated.
    Russian Agricultural Sciences 39(1).


Available from
Jun 2, 2014