Article

Effects of extruded linseed dietary supplementation on milk yield, milk quality and lipid metabolism of dairy cows

Italian Journal of Animal Science 04/2010; DOI: 10.4081/ijas.2007.1s.333
Source: DOAJ

ABSTRACT Twenty Italian Friesian dairy cows were used in an experimental trial to study the effects of extruded linseed dietary supplementation on milk production, milk quality and fatty acid (FA) percentages of milk fat and total plasma lipids and plasma phospholipids. Control cows were fed a corn silage based total mixed ration (TMR) while treated animals also received 700g/head/d of extruded linseed supplementation. Feed intake was similar between groups. Milk yields was tendentially greater for cows fed extruded linseed. Milk urea content (P<0.05) were reduced by treatment. Results showed a significant increase n-3 FA concentration (particularly alpha linolenic acid) and a significant reduction of n-6/n-3 FA ratio in milk fat, total plasma lipids and plasma phospholipids (P<0.001); moreover a reduction trend (P<0.1) of arachidonic acid concentrations was observed in milk fat, total plasma lipids and plasma phospholipids. At last, treatment enhanced milk fat conjugated linoleic acid (CLA) percentage (P<0.05).

Full-text

Available from: Paolo Pezzi, May 13, 2015
0 Followers
 · 
206 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to evaluate the effects of the dietary inclusion of grape seed, alone or in combination with linseed, on milk production traits, immune response, and liver and kidney metabolic activity of lactating ewes. Twenty-four Sarda dairy ewes were randomly assigned to 4 dietary treatments consisting of a control diet (CON), a diet containing 300 g/d per head of grape seed (GS), a diet containing 220 g/d per head of extruded linseed (LIN), and a diet containing a mix of 300 g/d per head of grape seed and 220 g/d per head of extruded linseed (MIX). The study lasted 10 wk, with 2 wk of adaptation period and 8 wk of experimental period. Milk yield was measured and samples were collected weekly and analyzed for fat, protein, casein, lactose, pH, milk urea nitrogen, and somatic cell count. Blood samples were collected every 2 wk by jugular vein puncture and analyzed for hematological parameters, for albumin, alkaline phosphatase, bilirubin, creatinine, gamma glutamyltransferase, aspartate aminotransferase, alanine aminotransferase, protein, blood urea nitrogen, and for anti-albumin IgG, IL-6, and lymphocyte T-helper (CD4(+)) and lymphocyte T-cytotoxic (CD8(+)) cells. On d 0, 45, and 60 of the trial, lymphocyte response to phytohemagglutinin was determined in vivo on each animal by measuring skin-fold thickness (SFT) at the site of phytohemagglutinin injection. Humoral response to chicken egg albumin was stimulated by a subcutaneous injection with albumin. Dietary treatments did not affect milk yield and composition. Milk urea nitrogen and lactose were affected by diet × period. Diets did not influence hematological, kidney, and liver parameters, except for blood urea nitrogen, which decreased in LIN and increased in MIX compared with CON and GS. Dietary treatments did not alter CD4(+), CD8(+), and CD4(+)-to-CD8(+) ratio. The SFT was reduced in GS and MIX and increased in LIN compared with CON. The IgG and IL-6 were affected by diet × period. The reduction in IgG on d 60 and SFT in ewes fed GS suggests an immunomodulatory effect of this residue. The limited variation in milk and hematological and metabolic parameters suggests that GS and LIN can be included, alone or in combination, in the diet of dairy ewes without adverse effects on milk production and health status. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
    Journal of Dairy Science 12/2014; 98(2). DOI:10.3168/jds.2014-8659 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to investigate whether the addition of extruded flaxseed (EF) in dairy cow diets had an effect on milk fat and individual fatty acids (FA) recovery in cheese after 90 d of ripening. Eighteen Holstein-Friesian cows, divided into 3 experimental groups (6 cows/group), were fed 3 isonitrogenous and isoenergetic diets with 0 (CTR), 500 (EF500), or 1,000 g/d (EF1000) of EF in 3 subsequent periods (2 wk/each), following a 3 × 3 Latin square design. Dry matter intake (DMI) and milk yield were recorded daily. Individual milk samples were collected on d 7 and 13 of each period to determine proximate and FA composition. Eighteen cheese-making sessions (2 for each group and period) were carried out, using a representative pooled milk sample obtained from the 6 cows of each group (10 L). At 90 d of ripening, cheeses were analyzed for proximate and FA composition. Cheese yield was computed as the ratio between the weights of ripened cheese and processed milk. Recoveries of fat, individual FA, and grouped FA were computed as the ratio between the corresponding weights in cheese and in milk. Inclusion of EF did not affect DMI, milk yield, or milk composition. Compared with CTR, the 2 diets containing EF increased the proportion of C18:3n-3 and total n-3 FA, in both milk and cheese. Cheese yield and cheese fat percentage did not differ among diets. Likewise, milk fat recovery in cheese was comparable in the 3 treatments and averaged 0.85. The recoveries of individual FA were, for the most part, not dissimilar from fat recovery, except for short-chain saturated FA (from 0.38 for C4:0 to 0.80 for C13:0), some long-chain saturated FA (0.56 and 0.62 for C20:0 and C21:0, respectively), and for C18:3n-6 (1.65). The recovery of saturated FA was lower than that of monounsaturated FA, whereas recovery of polyunsaturated FA was intermediate. Compared with medium- and long-chain FA, short-chain FA were recovered to a smaller extent in cheese. No differences in recovery were found between n-6 and n-3 FA. In conclusion, FA have different recoveries during cheese-making, with lower values for the short-chain compared with long-chain FA, and for saturated FA compared with unsaturated FA. The addition of EF in dairy cow diets did not influence cheese yield or fat recovery in cheese, irrespective of the inclusion level. The experiment confirmed that feeding cows with EF represents a successful strategy for improving the FA profile of dairy products, through an increase of n-3 FA.
    Journal of Dairy Science 11/2013; 97(1). DOI:10.3168/jds.2013-7213 · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the first of this three-part series of articles, the debate in the clinical literature over the reality or extent of particular positive health benefits of a putative nutraceutical, conjugated linoleic acids (CLAs), in human subjects was reviewed. In the second part, we explored the means by which animal scientists and farmers—responding as much to annual sales in the hundreds of millions of dollars in health food stores of seed oil capsules rich in CLAs, as opposed to any conclusive clinical science—are aggressively pursuing ways to feed livestock and fowl that would naturally increase the concentration of CLAs per conventional consumer dietary portions of beef, lamb, goat, pork, and broiler chicken meat so as to be to be marketed as functional foods. In this third and final installment, animal nutrition means of enhancing CLAs in eggs and in fluid milk, cheese, yogurts, and butter are recorded. As in the prior parts of this series, the core journals covering this third chapter in the CLA research story are identified for agricultural and food science librarians.
    Journal of Agricultural & Food Information 05/2009; 10(2):124-148. DOI:10.1080/10496500902802718