A Model for predicting heat transfer through insulated steel-stud wall assemblies exposed to fire


ABSTRACT With the advent of performance-based codes and fire safety design options, the need for validated fire resistance models becomes essential. In this paper, a one-dimensional heat transfer model is presented. The model predicts the temperature distribution across steel stud wall assemblies with either glass or rock fibre insulation in the wall cavity. A number of assumptions were made to reduce the complexity of the model. A comparison between temperature predictions and measured temperatures at different surfaces across loaded and unloaded assemblies is presented. Comparison between the predicted and measured fire resistance for non-loadbearing assemblies is also presented. The model predicts the temperature for the stud flanges on the exposed and unexposed sides that are necessary for predicting the fire resistance of loadbearing wall assemblies. Limitations of the model and future improvements are identified. RES

0 0
1 Bookmark


Available from

M. A. Sultan