Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase

Howard Hughes Medical Institute, The Rockefeller University, USA.
Journal of Visualized Experiments 01/2010; DOI: 10.3791/1919
Source: PubMed

ABSTRACT In vivo studies suggest that replication forks are arrested due to encounters with head-on transcription complexes. Yet, the fate of the replisome and RNA polymerase (RNAP) following a head-on collision is unknown. Here, we find that the E. coli replisome stalls upon collision with a head-on transcription complex, but instead of collapsing, the replication fork remains highly stable and eventually resumes elongation after displacing the RNAP from DNA. We also find that the transcription-repair coupling factor, Mfd, promotes direct restart of the fork following the collision by facilitating displacement of the RNAP. These findings demonstrate the intrinsic stability of the replication apparatus and a novel role for the transcription-coupled repair pathway in promoting replication past a RNAP block.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that in Saccharomyces cerevisiae replication checkpoint inactivation via a mec1 mutation leads to chromosome breakage at replication forks initiated from virtually all origins after transient exposure to hydroxyurea (HU), an inhibitor of ribonucleotide reductase. Here we sought to determine whether all replication forks containing single-stranded DNA gaps have equal probability of producing double strand breaks (DSBs) when cells attempt to recover from HU exposure. We devised a new methodology, Break-seq, that combines our previously described DSB labeling with next generation sequencing to map chromosome breaks with improved sensitivity and resolution. We show that DSBs preferentially occur at genes transcriptionally induced by HU. Notably, different subsets of the HU-induced genes produced DSBs in MEC1 and mec1 cells as replication forks traversed a greater distance in MEC1 cells than in mec1 cells during recovery from HU. Specifically, while MEC1 cells exhibited chromosome breakage at stress-response transcription factors, mec1 cells predominantly suffered chromosome breakage at transporter genes, many of which are the substrates of the said transcription factors. We propose that HU-induced chromosome fragility arises at higher frequency near HU-induced genes as a result of destabilized replication forks encountering transcription factor binding and/or the act of transcription. We further propose that replication inhibitors can induce unscheduled encounters between replication and transcription and give rise to distinct patterns of chromosome fragile sites. Published by Cold Spring Harbor Laboratory Press.
    Genome Research 01/2015; DOI:10.1101/gr.180497.114 · 13.85 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The oriC DNA replication origin in bacterial chromosomes, the location of which appears to be physically identified, is genetically regulated by relevant molecular machinery. In contrast, the location of the terminus remains obscure for many bacterial replicons, except for terC, the proposed and well-studied chromosome termination site in certain bacteria. The terC locus, which is composed of specific sequences for its binding protein, is located at a site opposite from oriC, exhibiting a symmetric structure around the oriC-terC axis. Here, we investigated Bacillus subtilis 168 strains whose axes were hindered and found that the native terC function was robust. However, eradication of terminus region specific binding protein resulted in the natural terC sites not being used for termination; instead, new termini were selected at a location exactly opposite to oriC. We concluded that replication generally terminates at the loci where the two approaching replisomes meet. This site was automatically selected, and two replisomes moving at the same rate supported symmetrical chromosome structures relative to oriC. The rule, which was even validated by artificial chromosomes irrespective of oriC, should be general for replicons administered by two replisomes.
    Journal of Molecular Biology 06/2014; DOI:10.1016/j.jmb.2014.06.005 · 3.96 Impact Factor
  • Source


Available from