Integrative transcript and metabolite analysis of nutritionally enhanced DE-ETIOLATED1 downregulated tomato fruit.

Centre for Systems and Synthetic Biology, University of London, Egham, Surrey TW20 0EX, United Kingdom.
The Plant Cell (Impact Factor: 9.58). 04/2010; 22(4):1190-215. DOI: 10.1105/tpc.110.073866
Source: PubMed

ABSTRACT Fruit-specific downregulation of the DE-ETIOLATED1 (DET1) gene product results in tomato fruits (Solanum lycopersicum) containing enhanced nutritional antioxidants, with no detrimental effects on yield. In an attempt to further our understanding of how modulation of this gene leads to improved quality traits, detailed targeted and multilevel omic characterization has been performed. Metabolite profiling revealed quantitative increases in carotenoid, tocopherol, phenylpropanoids, flavonoids, and anthocyanidins. Qualitative differences could also be identified within the phenolics, including unique formation in fruit pericarp tissues. These changes resulted in increased total antioxidant content both in the polar and nonpolar fractions. Increased transcription of key biosynthetic genes is a likely mechanism producing elevated phenolic-based metabolites. By contrast, high levels of isoprenoids do not appear to result from transcriptional regulation but are more likely related to plastid-based parameters, such as increased plastid volume per cell. Parallel metabolomic and transcriptomic analyses reveal the widespread effects of DET1 downregulation on diverse sectors of metabolism and sites of synthesis. Correlation analysis of transcripts and metabolites independently indicated strong coresponses within and between related pathways/processes. Interestingly, despite the fact that secondary metabolites were the most severely affected in ripe tomato fruit, our integrative analyses suggest that the coordinated activation of core metabolic processes in cell types amenable to plastid biogenesis is the main effect of DET1 loss of function.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isoprene strengthens thylakoid membranes and scavenges stress-induced oxidative species. The idea that isoprene production might also influence isoprenoid and phenylpropanoid pathways under stress conditions was tested. We used transgenic tobacco to compare physiological and biochemical traits of isoprene emitting (IE) and non-emitting (NE) plants exposed to severe drought, and subsequent re-watering. Photosynthesis was less affected by drought in IE than in NE plants, and higher rates were also observed in IE than in NE plants recovering from drought. Isoprene emission was stimulated by mild drought. Under severe drought, isoprene emission declined, and levels of non-volatile isoprenoids, specifically de-epoxidated xanthophylls and ABA, were higher in IE than in NE plants. Soluble sugars and phenylpropanoids were also higher in IE plants. After re-watering, IE plants maintained higher levels of metabolites but isoprene emission was again higher than in unstressed plants. We suggest that isoprene production in transgenic tobacco triggered different responses, depending on drought severity. Under drought, the observed trade-off between isoprene and non-volatile isoprenoids suggests that in IE plants isoprene acts as a short-term protectant, whereas non-volatile isoprenoids protect against severe, long-term damage. After drought, it is suggested that the capacity to emit isoprene might up-regulate production of non-volatile isoprenoids and phenylpropanoids, which may further protect IE leaves.
    Plant Cell and Environment 04/2014; · 5.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perspective Agricultural biologists have their work cut out for translating large database of fundamental nature from laboratory, growth chamber and greenhouses studies to the field for securing and producing (nutritious) food and making agriculture sustainable. All kinds of transgenic lines have been developed, including transgenic lines that have promise of withstanding environmental extremes (abiotic and biotic) and others that have a high dose of phytonutrients. How they fare in the field is the need of the day, effectiveness of this translation will require diligence and a thorough knowledge of the investigated trait in each crop (Ronald, 2011; Nelissenetal., 2014). Moreover, there appears to be a probability that ecological surprises could be more prevalent because of global climate change and interacting environment extremes (Lindenmayer et al., 2010). Also, the point to note is that nutrient levels in crops are influenced by genotype/cultivar, growth condition and developmental stage of the crop (Shukla and Mattoo, 2010; Lee and Scagel, 2014), therefore unambiguous analysis of edible crops grown under similar conditions in the field is needed to determine the robustness of a trait (Neelam et al., 2008; Mattoo and Teasdale, 2010). Convergence of agriculture with health and wealth is a distinct possibility (Dube et al., 2012), and would also be benefited by developing necessary toolkits to establish bon a fide natural products chemistry and translate it into alternative medicine. Thus, with the available genetic toolkits together with advanced technologies, chemical genetics, and progression with alternative agricultural practices, future action plan is more or less laid out and road map defined for scientists and farmers to work together to meet the challenges the humankind faces in this new century. It is evident that there is a need to prioritize translational research as an important component of bench scientists’ goals of research. Certainly, there is hope in the horizon for developing new types of crop plants that can yield more and be nutritious with less inputs, are resilient to harsher environment, and are disease tolerant.
    Frontiers in Chemistry 06/2014; 2:30.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.
    Journal of Experimental Botany 04/2014; · 5.79 Impact Factor


Available from
May 28, 2014