Article

Association analysis of Neuregulin 1 candidate regions in schizophrenia and bipolar disorder.

Medical Genetics Section, Centre for Molecular Medicine and Institute of Genetics and Molecular Medicine, Molecular Medicine Centre, Western General Hospital, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
Neuroscience Letters (Impact Factor: 2.03). 06/2010; 478(1):9-13. DOI: 10.1016/j.neulet.2010.04.056
Source: PubMed

ABSTRACT Schizophrenia (SCZ) and bipolar disorder (BPD) are severe heritable psychiatric disorders involving a complex genetic aetiology. Neuregulin 1 (NRG1) is a leading candidate gene for SCZ, and has recently been implicated in BPD. We previously reported association of two NRG1 haplotypes with SCZ and BPD in a Scottish case-control sample. One haplotype is located at the 5' end of the gene (region A), and the other is located at the 3' end (region B). Here, association to haplotypes within regions A and B was assessed in patients with SCZ and BPD in a second Scottish case-control sample and in the two Scottish samples combined. Association to region B was also assessed in patients with SCZ and BPD in a German case-control sample, and in all three samples combined. No evidence was found for association in the new samples when analysed individually; however, in the joint analysis of the two Scottish samples, a region B haplotype comprising two SNPs (rs6988339 and rs3757930) was associated with SCZ and the combined case group (SCZ: p=0.0037, OR=1.3, 95% CI: 1.1-1.6; BPD+SCZ: p=0.0080, OR=1.2, 95% CI: 1.1-1.5), with these associations withstanding multiple testing correction at the single-test level (SCZ: p(st)=0.022; BPD+SCZ: p(st)=0.044). This study supports the involvement of NRG1 variants in the less well studied 3' region in conferring susceptibility to SCZ and BPD in the Scottish population.

0 Bookmarks
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing evidence for genetic overlap between schizophrenia (SCZ) and bipolar disorder (BPD) suggests that causal variants of large effect on disease risk may cross traditional diagnostic boundaries. Extended multigenerational families with both SCZ and BPD cases can be a valuable resource for discovery of shared biological pathways because they can reveal the natural evolution of the underlying genetic disruptions and their phenotypic expression. We investigated a deletion at the SLC1A1 glutamate transporter gene originally identified as a copy number variant exclusively carried by members of a 5-generation Palauan family. Using an expanded sample of 21 family members, quantitative PCR confirmed the deletion in all seven individuals with psychosis, three "obligate-carrier" parents and one unaffected sibling, while four marry-in parents were non-carriers. Linkage analysis under an autosomal dominant model generated a LOD-score of 3.64, confirming co-segregation of the deletion with psychosis. For more precise localization, we determined the approximate deletion end points using alignment of next-generation sequencing data for one affected deletion-carrier and then designed PCR amplicons to span the entire deletion locus. These probes established that the deletion spans 84,298 bp, thus eliminating the entire promoter, the transcription start site, and the first 59 amino acids of the protein, including the first transmembrane Na(2+) /dicarboxylate symporter domain, one of the domains that perform the glutamate transport action. Discovery of this functionally relevant SLC1A1 mutation and its co-segregation with psychosis in an extended multigenerational pedigree provides further support for the important role played by glutamatergic transmission in the pathophysiology of psychotic disorders. © 2013 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 01/2013; · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that neuregulin 1 (NRG1) might be involved in the neurodevelopment, neural plasticity, GABAergic neurotransmission, and pathogenesis of schizophrenia. NRG1 is abundantly expressed in the hippocampus, and emerging studies have begun to reveal the link between NRG1 signaling and cognitive deficits in schizophrenic patients. Because the transmembrane domain of NRG1 is vital for both forward and reverse signaling cascades, new Nrg1-deficient mice that carry a truncation of the transmembrane domain of the Nrg1 gene were characterized and used in this study to test a NRG1 loss-of-function hypothesis for schizophrenia. Both male and female Nrg1 heterozygous mutant mice and their wild-type littermates were used in a series of 4 experiments to characterize the impact of Nrg1 on behavioral phenotypes and to determine the importance of Nrg1 in the regulation of hippocampal neuromorphology and local GABAergic interneurons. First, a comprehensive battery of behavioral tasks indicated that male Nrg1-deficient mice exhibited significant impairments in cognitive functions. Second, pharmacological challenges were conducted and revealed that Nrg1 haploinsufficiency altered GABAergic activity in males. Third, although no genotype-specific neuromorphological alterations were found in the hippocampal CA1 pyramidal neurons, significant reductions in the hippocampal expressions of GAD67 and parvalbumin were revealed in the Nrg1-deficient males. Fourth, chronic treatment with valproate rescued the observed behavioral deficits and hippocampal GAD67 reduction in Nrg1-deficient males. Collectively, these results indicate the potential therapeutic effect of valproate and the importance of Nrg1 in the regulation of cognitive functions and hippocampal GABAergic interneurons, especially in males.
    Frontiers in Behavioral Neuroscience 04/2014; 8:126. · 4.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Neuregulin-1 (NRG1) gene polymorphisms have been proposed as risk factors for several common disorders. Associations with cognitive variation have also been tested. With regard to schizophrenia (SZ) risk, studies of Caucasian ancestry samples indicate associations more consistently than East Asian samples, suggesting heterogeneity. To exploit the differences in linkage disequilibrium (LD) structure across ethnic groups, we conducted a SZ case-control study (that included cognitive evaluations) in a sample from the north Indian population. METHODS: NRG1 variants (n=35 SNPs, three microsatellite markers) were initially analyzed among cases (DSM IV criteria, n=1007) and controls (n=1019, drawn from two groups) who were drawn from the same geographical region in North India. Nominally significant associations with SZ were next analyzed in relation to neurocognitive measures estimated with a computerized neurocognitive battery in a subset of the sample (n=116 cases, n=170 controls). RESULTS: Three variants and one microsatellite showed allelic association with SZ (rs35753505, rs4733263, rs6994992, and microsatellite 420M9-1395, p≤0.05 uncorrected for multiple comparisons). A six marker haplotype 221121 (rs35753505-rs6994992-rs1354336-rs10093107-rs3924999-rs11780123) showed (p=0.0004) association after Bonferroni corrections. Regression analyses with the neurocognitive measures showed nominal (uncorrected) associations with emotion processing and attention at rs35753505 and rs6994992, respectively. CONCLUSIONS: Suggestive associations with SZ and SZ-related neurocognitive measures were detected with two SNPs from the NRG1 promoter region in a north Indian cohort. The functional role of the alleles merits further investigation.
    Schizophrenia Research 01/2013; · 4.59 Impact Factor