Can the Brighton Collaboration case definitions be used to improve the quality of Adverse Event Following Immunization (AEFI) reporting?. Anaphylaxis as a case study

Discipline of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia.
Vaccine (Impact Factor: 3.62). 04/2010; 28(28):4487-98. DOI: 10.1016/j.vaccine.2010.04.041
Source: PubMed


The Brighton Collaboration (BC) was established in 2000 with the aim of developing globally accepted standardized case definitions for adverse events following immunizations (AEFI) as well as guidelines for the collection, analysis and presentation of surveillance data. Some of the BC case definitions are complex and this may limit their application for use in post-marketing vaccine surveillance. Barriers to the application of the BC case definitions include an incomplete description of an adverse event and inconsistencies in reporter use of adverse event terms. We have taken the BC case definition for anaphylaxis and developed a clinical checklist and glossary of terms used in the case definition. It is anticipated that these resources can be used at a community level by AEFI reporters. If used, these resources could improve the quality of adverse event reports which would facilitate the application of the BC case definition at a regional and/or national level.

7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present here a detailed analysis of anaphylaxis cases reported to GlaxoSmithKline safety database following vaccination with its H1N1 pandemic influenza vaccines, Pandemrix™ and Arepanrix™. Cases were assessed according to the Brighton Collaboration Case Definition (BCCD) as either confirmed diagnosis (97/395, 24.6%), insufficient information to fulfil the minimal criteria of the case definition (117/395, 29.6%) or anaphylaxis excluded (181/395, 45.8%). There was no evidence that the rate of anaphylaxis following vaccination with Pandemrix™ or Arepanrix™ is increased with respect to the rates of anaphylaxis for other vaccines. Our analysis also highlighted the challenges of reliably determining the rate of anaphylaxis as an adverse event in the postmarketing setting following mass vaccination, as anaphylaxis was excluded in 45.8% of reported cases.
    Vaccine 04/2011; 29(37):6402-7. DOI:10.1016/j.vaccine.2011.04.026 · 3.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify the rate of serious adverse events attributable to yellow fever vaccination with 17D and 17DD strains reported in active and passive surveillance data. We conducted a systematic review of published literature on adverse events associated with yellow fever. We searched 9 electronic databases for peer reviewed and grey literature in all languages. There were no restrictions on date of publication. Reference lists of key studies were also reviewed to identify additional studies. We identified 66 relevant studies: 24 used active, 17 a combination of passive and active (15 of which were pharmacovigilance databases), and 25 passive surveillance. ACTIVE SURVEILLANCE: A total of 2,660,929 patients in general populations were followed for adverse events after vaccination, heavily weighted (97.7%) by one large Brazilian study. There were no observed cases of viscerotropic or neurotropic disease, one of anaphylaxis and 26 cases of urticaria (hypersensitivity). We also identified four studies of infants and children (n=2199), four studies of women (n=1334), and one study of 174 HIV+, and no serious adverse events were observed. PHARMACOVIGILANCE DATABASES: 10 of the 15 databases contributed data to this review, with 107,621,154 patients, heavily weighted (94%) by the Brazilian database. The estimates for Australia were low at 0/210,656 for "severe neurological disease" and 1/210,656 for YEL-AVD, and also low for Brazil with 9 hypersensitivity events, 0.23 anaphylactic shock events, 0.84 neurologic syndrome events and 0.19 viscerotropic events cases/million doses. The five analyses of partly overlapping periods for the US VAERS database provided an estimate of 6.6 YEL-AVD and YEL-AND cases per million, and estimates between 11.1 and 15.6 of overall "serious adverse events" per million. The estimates for the UK were higher at 34 "serious adverse events" and also for Switzerland with 14.6 "neurologic events" and 40 "serious events not neurological"/million doses. PASSIVE SURVEILLANCE: Six studies of campaigns in general populations included 94,500,528 individuals, very heavily weighted (99%) by the Brazilian data, and providing an estimate of 0.51 serious AEFIs/million doses. Five retrospective reviews of hospital or clinic records included 60,698 individuals, and no serious AEFIs were proven. The data are heavily weighted (96%) by the data from the Hospital for Tropical Diseases, London. Two studies included 35,723 children, four studies included 138 pregnant women, six studies included 191 HIV+ patients, and there was one review of patients who were HIV+, and no serious AEFIs were proven. The databases in each country used different definitions, protocols, surveillance mechanisms for the initial identification and reporting of cases, and strategies for the clinical and laboratory follow up of cases. The pharmacovigilance databases provide three sets of estimates: a low estimate from the Brazilian and Australian data, a medium estimate from the US VAERS data, and a higher estimate from the UK and Swiss data. The estimates from the active surveillance data are lower (and strongly influenced by the Brazilian data) and the estimates from the passive surveillance studies are also lower (strongly influenced by the London Hospital for Tropical Diseases data from the early 1950s). Sophisticated pathology, histopathology and tests such as PCR amplicon sequencing are needed to prove that serious adverse events were actually caused by the yellow fever vaccine, and the availability of such diagnostic capability is strongly biased towards recent reports from developed countries. Despite these variations in the estimation of serious harm, overall the 17D and 17DD yellow fever vaccine has proven to be a very safe vaccine and is highly effective against an illness with high potential mortality rates.
    Vaccine 06/2011; 29(28):4544-55. DOI:10.1016/j.vaccine.2011.04.055 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With more vaccines becoming available worldwide, vaccine research is on the rise in developing countries. To gain a better understanding of safety reporting from vaccine clinical research in developing countries, we conducted a systematic review in Medline and Embase (1989-2011) of published randomized clinical trials (RCTs) reporting safety outcomes with ≥50% developing country participation (PROSPERO systematic review registration number: CRD42012002025). Developing country vaccine RCTs were analyzed with respect to the number of participants, age groups studied, inclusion of safety information, number of reported adverse events following immunization (AEFI), type and duration of safety follow-up, use of standardized AEFI case definitions, grading of AEFI severity, and the reporting of levels of diagnostic certainty for AEFI. The systematic search yielded a total number of 50 randomized vaccine clinical trials investigating 12 different vaccines, most commonly rotavirus and malaria vaccines. In these trials, 94,459 AEFI were reported from 446,908 participants receiving 735,920 vaccine doses. All 50 RCTs mentioned safety outcomes with 70% using definitions for at least one AEFI. The most commonly defined AEFI was fever (27), followed by local (16) and systemic reactions (14). Logistic regression analysis revealed a positive correlation between the implementation of a fever case definition and the reporting rate for fever as an AEFI (p=0.027). Overall, 16 different definitions for fever and 7 different definitions for erythema were applied. Predefined AEFI case definitions by the Brighton Collaboration were used in only two out of 50 RCTs. The search was limited to RCTs published in English or German and may be missing studies published locally. The reported systematic review suggests room for improvement with respect to the harmonization of safety reporting from developing country vaccine clinical trials and the implementation of standardized case definitions.
    Vaccine 03/2012; 30(22):3255-65. DOI:10.1016/j.vaccine.2012.02.059 · 3.62 Impact Factor
Show more