Neuregulin 1-erbB4 pathway in schizophrenia: From genes to an interactome.

Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States.
Brain research bulletin (Impact Factor: 2.97). 04/2010; 83(3-4):132-9. DOI: 10.1016/j.brainresbull.2010.04.011
Source: PubMed

ABSTRACT Recently identified candidate susceptibility genes for schizophrenia are likely to play, important roles in the pathophysiology of the illness. It is also clear, however, that the etiologic, contribution of these genes is not only via their own functions but also through interactions with other, genes and environmental factors. Genetic, transgenic and postmortem brain studies support a, potential role for NRG1-erbB4 signaling in schizophrenia. Embedded in the results of these studies, however, are clues to the notion that NRG1-erbB4 signaling does not act alone but in conjunction with, other pathways. This article aims to re-evaluate the evidence for the role of neuregulin 1 (NRG1)-erbB4 signaling in schizophrenia by focusing on its interactions with other candidate susceptibility, pathways. In addition, we consider molecular substrates upon which the NRG1-erbB4 and other, candidate pathways converge contributing to susceptibility for the illness (schizophrenia interactome). Glutamatergic signaling can be an interesting candidate for schizophrenia interactome. Schizophrenia is associated with NMDA receptor hypofunction and moreover, several susceptibility genes for, schizophrenia converge on NMDA receptor signaling. These candidate genes influence NMDA receptor, signaling via diverse mechanisms, yet all eventually impact on protein composition of NMDA receptor, complexes. Likewise, the protein associations in the receptor complexes can themselves modulate, signaling molecules of candidate genes and their pathways. Therefore, protein-protein interactions in the NMDA receptor complexes can mediate reciprocal interactions between NMDA receptor function, and susceptibility candidate pathways including NRG1-erbB4 signaling and thus can be a, schizophrenia interactome.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive disorders such as schizophrenia and Alzheimer's disease are associated with dysfunction of the highly evolved dorsolateral prefrontal cortex (dlPFC), and with changes in glutamatergic N-methyl-D-aspartate receptors (NMDARs). Recent research on the primate dlPFC discovered that the pyramidal cell circuits that generate the persistent firing underlying spatial working memory communicate through synapses on spines containing NMDARs with NR2B subunits (GluN2B) in the post-synaptic density. This contrasts with synapses in the hippocampus and primary visual cortex, where GluN2B receptors are both synaptic and extrasynaptic. Blockade of GluN2B in the dlPFC markedly reduces the persistent firing of the Delay cells needed for neuronal representations of visual space. Cholinergic stimulation of nicotinic α7 receptors within the glutamate synapse is necessary for NMDAR actions. In contrast, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors have only subtle effects on the persistent firing of Delay cells, but contribute substantially to the firing of Cue and Response cells. Systemic administration of the NMDAR antagonist ketamine reduces the persistent firing of Delay cells, but increases the firing of some Response cells. The reduction in persistent firing produced by ketamine may explain why this drug can mimic or worsen the cognitive symptoms of schizophrenia. Similar actions in the medial PFC circuits representing the emotional aspects of pain may contribute to the rapid analgesic and anti-depressant actions of ketamine.
    Neuroscience Bulletin 03/2015; 31(2). DOI:10.1007/s12264-014-1504-6 · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia (SCZ) is a complex mental disorder contributed by both genetic and epigenetic factors. Long noncoding RNAs (lncRNAs) was recently found playing an important regulatory role in mental disorders. However, little was known about the DNA methylation of lncRNAs, although numerous SCZ studies have been performed on genetic polymorphisms or epigenetic marks in protein coding genes. We presented a comprehensive genome wide DNA methylation study of both protein coding genes and lncRNAs in female patients with paranoid and undifferentiated SCZ. Using the methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), 8,163 and 764 peaks were identified in paranoid and undifferentiated SCZ, respectively (p < 1×10-5). Gene ontology analysis showed that the hypermethylated regions were enriched in the genes related to neuron system and brain for both paranoid and undifferentiated SCZ (p < 0.05). Among these peaks, 121 peaks were located in gene promoter regions that might affect gene expression and influence the SCZ related pathways. Interestingly, DNA methylation of 136 and 23 known lncRNAs in Refseq database were identified in paranoid and undifferentiated SCZ, respectively. In addition, ∼20% of intergenic peaks annotated based on Refseq genes were overlapped with lncRNAs in UCSC and gencode databases. In order to show the results well for most biological researchers, we created an online database to display and visualize the information of DNA methyation peaks in both types of SCZ ( Our results showed that the aberrant DNA methylation of lncRNAs might be another important epigenetic factor for SCZ. Copyright © 2014. Published by Elsevier Masson SAS.
    European Journal of Medical Genetics 12/2014; DOI:10.1016/j.ejmg.2014.12.001 · 1.49 Impact Factor
  • Source
    British Journal of Pharmacology 11/2011; 164(s1). DOI:10.1111/j.1476-5381.2011.01649_8.x · 4.99 Impact Factor