Article

Shepherding AKT and Androgen Receptor by Ack1 Tyrosine Kinase

Drug Discovery Program, Moffitt Cancer Center, Tampa, Florida 33612, USA.
Journal of Cellular Physiology (Impact Factor: 3.87). 08/2010; 224(2):327-33. DOI: 10.1002/jcp.22162
Source: PubMed

ABSTRACT Ack1 (also known as ACK, TNK2, or activated Cdc42 kinase) is a structurally unique non-receptor tyrosine kinase that is expressed in diverse cell types. It integrates signals from plethora of ligand-activated receptor tyrosine kinases (RTKs), for example, MERTK, EGFR, HER2, PDGFR and insulin receptor to initiate intracellular signaling cascades. Ack1 transduces extracellular signals to cytosolic and nuclear effectors such as the protein kinase AKT/PKB and androgen receptor (AR), to promote cell survival and growth. While tyrosine phosphorylation of AR at Tyr267 regulates androgen-independent recruitment of AR to the androgen-responsive enhancers and transcription of AR target genes to drive prostate cancer progression, phosphorylation of an evolutionarily conserved Tyrosine 176 in the kinase domain of AKT is essential for mitotic progression and positively correlates with breast cancer progression. In contrast to AR and AKT, Ack1-mediated phosphorylation of the tumor suppressor Wwox at Tyr287 lead to rapid Wwox polyubiquitination followed by degradation. Thus, by its ability to promote tumor growth by negatively regulating tumor suppressor such as Wwox and positively regulating pro-survival factors such as AKT and AR, Ack1 is emerging as a critical player in cancer biology. In this review, we discuss recent advances in understanding the physiological functions of Ack1 signaling in normal cells and the consequences of its hyperactivation in various cancers.

0 Followers
 · 
116 Views
 · 
0 Downloads
  • Source
    • "Activated Cdc42-associated kinase (ACK1) can phosphorylate WWOX at Tyr33 and Tyr287, and the Tyr287 phosphorylation process is associated with WWOX polyubiquitination and degradation. However, the E3 ubiquitin ligase needed for WWOX ubiquitination has not been identified 7, 8, 10. "
    [Show abstract] [Hide abstract]
    ABSTRACT: WWOX, a gene that spans the second most common chromosomal fragile site (FRA16D), often exhibits homozygous deletions and translocation breakpoints under multiple cellular stresses induced by extrinsic or intrinsic factors, such as hypoxia, UV, and DNA damage regents. Loss of WWOX is closely related to genomic instability, tumorigenesis, cancer progression and therapy resistance. WWOX heterozygous knockout mice show an increased incidence of spontaneous or induced tumors. WWOX can interact via the WW domain with proteins that possess proline PPxY motifs and is involved in a variety of cellular processes. Accumulating evidence has shown that WWOX that contains a short-chain dehydrogenase/reductase (SDR) domain is involved in steroid metabolism and bone development. Reduced or lost expression of WWOX will lead to development of metabolic disease. In this review, we focus on the roles of WWOX in metabolic disorders and tumors.
    International journal of biological sciences 01/2014; 10(2):142-148. DOI:10.7150/ijbs.7727 · 4.37 Impact Factor
  • Source
    • "Ack1 has been implicated in several stages and several types of cancer; this topic has been reviewed recently in [65]. Early experiments demonstrated that a peptide derived from the Ack1 CRIB domain blocked the Ras-mediated transformation of NIH-3T3 cells [66]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
    02/2011; 2011:742372. DOI:10.1155/2011/742372
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hormone therapies targeting androgen receptor signaling are the mainstay of treatment for patients with advanced prostate cancer. The length of clinical remission induced by hormone therapies varies substantially among treated patients. Why some patients progress rapidly after treatment while others benefit with prolonged remission is a question that remains unsolved. The androgen receptor signaling pathway is the key molecular determinant of castration resistance, and a key target for prostate cancer drug design. Recent advances in characterizing molecular processes leading to the development of castration-resistant prostate cancer, including the discovery of multiple androgen receptor splicing variants, offer opportunities for rational development of new clinical tools or approaches to predict, monitor or control/prevent prostate cancer progression in the castrate setting.
    Expert Review of Endocrinology &amp Metabolism 09/2010; 5(5):753-764. DOI:10.1586/eem.10.49
Show more