Article

Krüppel-like factor 2 regulates trafficking and homeostasis of gammadelta T cells.

Center for Immunology and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA.
The Journal of Immunology (Impact Factor: 5.36). 06/2010; 184(11):6060-6. DOI: 10.4049/jimmunol.1000511
Source: PubMed

ABSTRACT gammadelta T cells are generated in the thymus and traffic to secondary lymphoid organs and epithelial surfaces, where they regulate immune responses. alphabeta T cells require sphingosine 1-phosphate receptor type 1 (S1P(1)) and CD62L for thymic emigration and circulation through secondary lymphoid organs. Both of these genes are regulated by the transcription factor Krüppel-like factor 2 (KLF2) in conventional alphabeta T cells. It is unclear if gammadelta T cells use similar mechanisms. In this study, we show that thymic gammadelta T cells express S1P(1) and that it is regulated by KLF2. Furthermore, KLF2 and S1P(1)-deficient gammadelta T cells accumulate in the thymus and fail to populate the secondary lymphoid organs or gut, in contrast to the expectation from published work. Interestingly, KLF2 but not S1P(1) deficiency led to the expansion of a usually rare population of CD4(+) promyelocytic leukemia zinc finger(+) "gammadelta NKT" cells. Thus, KLF2 is critically important for the homeostasis and trafficking of gammadelta T cells.

0 Bookmarks
 · 
88 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
    Mechanisms of ageing and development 01/2014; · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-mediated immunity critically depends on the localization of lymphocytes at sites of infection. While some memory T cells recirculate, a distinct lineage (resident memory T cells (TRM cells)) are embedded in nonlymphoid tissues (NLTs) and mediate potent protective immunity. However, the defining transcriptional basis for the establishment of TRM cells is unknown. We found that CD8(+) TRM cells lacked expression of the transcription factor KLF2 and its target gene S1pr1 (which encodes S1P1, a receptor for sphingosine 1-phosphate). Forced expression of S1P1 prevented the establishment of TRM cells. Cytokines that induced a TRM cell phenotype (including transforming growth factor-β (TGF-β), interleukin 33 (IL-33) and tumor-necrosis factor) elicited downregulation of KLF2 expression in a pathway dependent on phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt, which suggested environmental regulation. Hence, regulation of KLF2 and S1P1 provides a switch that dictates whether CD8(+) T cells commit to recirculating or tissue-resident memory populations.
    Nature Immunology 10/2013; · 24.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine-1-phosphate (S1P) is a central factor responsible for lymphocyte distribution in the body. S1P is able to control the integrity of various effector cell populations within many lymphoid tissues by directing lymphocyte egress. In this review, we give an overview of the generation and degradation of S1P in specific lymphoid microenvironments. Furthermore, we discuss, sometimes contradictory, the functions of the five S1P receptors on different cells in diverse tissues and give an idea of additional counteracting chemotactic signals for lymphocyte immigration and emigration. We focus special attention to recent discoveries of S1P-specific transporters, like spinster-homolog-2 and the active secretion of S1P by endothelial cells, erythrocytes and platelets. In addition, we describe the microanatomical structures as well as entry and egress routes into lymphoid organs which lymphocytes use for efficient trafficking. Finally, we give an overview of open questions regarding the regulation of lymphocyte homing from primary lymphoid organs to secondary lymphoid organs and back again.
    Archivum Immunologiae et Therapiae Experimentalis 11/2013; 62(2). · 2.38 Impact Factor

Full-text (2 Sources)

Download
58 Downloads
Available from
Jun 4, 2014