Quantitative expression analysis and prognostic significance of L-DOPA decarboxylase in colorectal adenocarcinoma

Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Athens GR-15701, Greece.
British Journal of Cancer (Impact Factor: 4.82). 04/2010; 102(9):1384-90. DOI: 10.1038/sj.bjc.6605654
Source: PubMed

ABSTRACT L-DOPA decarboxylase (DDC) is an enzyme that catalyses, mainly, the decarboxylation of L-DOPA to dopamine and was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of the DDC gene and to evaluate its clinical utility in tissues with colorectal adenocarcinoma.
Total RNA was isolated from colorectal adenocarcinoma tissues of 95 patients. After having tested RNA quality, we prepared cDNA by reverse transcription. Highly sensitive quantitative real-time PCR method for DDC mRNA quantification was developed using the SYBR Green chemistry. GAPDH served as a housekeeping gene. Relative quantification analysis was performed using the comparative C(T) method (2(-DeltaDeltaC(T))).
DDC mRNA expression varied remarkably among colorectal tumours examined in this study. High DDC mRNA expression levels were found in well-differentiated and Dukes' stage A and B tumours. Kaplan-Meier survival curves showed that patients with DDC-positive tumours have significantly longer disease-free survival (P=0.009) and overall survival (P=0.027). In Cox regression analysis of the entire cohort of patients, negative DDC proved to be a significant predictor of reduced disease-free (P=0.021) and overall survival (P=0.047).
The results of the study suggest that DDC mRNA expression may be regarded as a novel potential tissue biomarker in colorectal adenocarcinoma.

Download full-text


Available from: Iordanis Papadopoulos, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.
    Translational oncology 08/2012; 5(4):288-96. DOI:10.1593/tlo.12223 · 3.40 Impact Factor
  • Source
    British Journal of Cancer 03/2011; 104(6):1055. DOI:10.1038/bjc.2011.35 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK, PRKA) has central roles in cellular metabolic sensing and energy balance homeostasis, and interacts with various pathways (e.g., TP53 (p53), FASN, MTOR and MAPK3/1 (ERK)). AMP-activated protein kinase activation is cytotoxic to cancer cells, supporting AMPK as a tumour suppressor and a potential therapeutic target. However, no study has examined its prognostic role in colorectal cancers. Among 718 colon and rectal cancers, phosphorylated AMPK (p-AMPK) and p-MAPK3/1 expression was detected in 409 and 202 tumours, respectively, by immunohistochemistry. Cox proportional hazards model was used to compute mortality hazard ratio (HR), adjusting for clinical and tumoral features, including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. Phosphorylated AMPK expression was not associated with survival among all patients. Notably, prognostic effect of p-AMPK significantly differed by p-MAPK3/1 status (P(interaction)=0.0017). Phosphorylated AMPK expression was associated with superior colorectal cancer-specific survival (adjusted HR 0.42; 95% confidence interval (CI), 0.24-0.74) among p-MAPK3/1-positive cases, but not among p-MAPK3/1-negative cases (adjusted HR 1.22; 95% CI: 0.85-1.75). Phosphorylated AMPK expression in colorectal cancer is associated with superior prognosis among p-MAPK3/1-positive cases, but not among p-MAPK3/1-negative cases, suggesting a possible interaction between the AMPK and MAPK pathways influencing tumour behaviour.
    British Journal of Cancer 09/2010; 103(7):1025-33. DOI:10.1038/sj.bjc.6605846 · 4.82 Impact Factor